版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古包铁第一中学高二数学第一学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线(,)的左、右焦点分别为,,点A的坐标为,点P是双曲线在第二象限的部分上一点,且,点Q是线段的中点,且,Q关于直线PA对称,则双曲线的离心率为()A.3 B.2C. D.2.下列求导运算正确的是()A. B.C. D.3.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A. B.C. D.4.如图,在平行六面体中,,则与向量相等的是()A. B.C. D.5.已知是抛物线上的一个动点,是圆上的一个动点,是一个定点,则的最小值为A. B.C. D.6.已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为A. B.C. D.7.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个8.焦点为的抛物线标准方程是()A. B.C. D.9.已知,,则()A. B.C. D.10.在平面上给定相异两点,设点在同一平面上且满足,当且时,点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆.现有双曲线,为双曲线的左、右顶点,为双曲线的虚轴端点,动点满足,面积的最大值为,面积的最小值为,则双曲线的离心率为()A. B.C. D.11.函数的最小值为()A. B.1C.2 D.e12.已知,则点关于平面的对称点的坐标是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆与圆相交,则的取值范围是__________.14.已知函数是定义域上的单调递增函数,是的导数且为定义域上的单调递减函数,请写出一个满足条件的函数的解析式___________15.过点,且周长最小的圆的标准方程为______16.如图,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈,〉=,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p:“,”为假命题,命题q:“实数满足”.若是真命题,是假命题,求的取值范围18.(12分)已知:对任意,都有;:存在,使得(1)若“且”为真,求实数的取值范围;(2)若“或”为真,“且”为假,求实数的取值范围19.(12分)已知椭圆过点,且离心率,为坐标原点.(1)求椭圆的方程;(2)判断是否存在直线,使得直线与椭圆相交于两点,直线与轴相交于点,且满足,若存在,求出直线的方程;若不存在,请说明理由.20.(12分)如图,在正方体中,E,F,G,H,K,L分别是AB,,,,,DA各棱的中点.(1)求证:E,F,G,H,K,L共面:(2)求证:平面EFGHKL;(3)求与平面EFGHKL所成角的余弦值.21.(12分)已知椭圆的左,右焦点为,椭圆的离心率为,点在椭圆C上(1)求椭圆C的方程;(2)点T为椭圆C上的点,若点T在第一象限,且与x轴垂直,过T作两条斜率互为相反数的直线分别与椭圆C交于点M,N,探究直线的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由22.(10分)过点作圆的两条切线,切点分别为A,B;(1)求直线AB的方程;(2)若M为圆上的一点,求面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由角平分线的性质可得,结合已知条件即可求双曲线的离心率.【题目详解】由题设,易知:,由知:,即,整理得:.故选:C2、B【解题分析】根据基本初等函数的导数和求导法则判断.【题目详解】,,,,只有B正确.故选:B.【题目点拨】本题考查基本初等函数的导数公式,考查导数的运算法则,属于基础题.3、B【解题分析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【题目详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B【题目点拨】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养4、A【解题分析】根据空间向量的线性运算法则——三角形法,准确运算,即可求解.【题目详解】由题意,在平行六面体中,,可得.故选:A.5、A【解题分析】恰好为抛物线的焦点,等于到准线的距离,要想最小,过圆心作抛物线的准线的垂线交抛物线于点,交圆于,最小值等于圆心到准线的距离减去半径4-1=.考点:1.抛物线的定义;2.圆中的最值问题;6、D【解题分析】由题意,双曲线的渐近线方程为,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C:上,∴,∵,∴,∴,∴∴椭圆方程为:.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质.7、D【解题分析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【题目详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【题目点拨】关键点睛:利用方程特征进行求解判断是解题的关键.8、D【解题分析】设抛物线的方程为,根据题意,得到,即可求解.【题目详解】由题意,设抛物线的方程为,因为抛物线的焦点为,可得,解得,所以抛物线的方程为.故选:D.9、C【解题分析】利用空间向量的坐标运算即可求解.【题目详解】因为,,所以,故选:C.10、C【解题分析】先求动点的轨迹方程,再根据面积的最大值求得,根据的面积最小值求,由此可求双曲线的离心率.【题目详解】设,,,依题意得,即,两边平方化简得,所以动点的轨迹是圆心为,半径的圆,当位于圆的最高点时的面积最大,所以,解得;当位于圆的最左端时的面积最小,所以,解得,故双曲线的离心率为.故选:C.11、B【解题分析】先化简为,然后通过换元,再研究外层函数单调性,进而求得的最小值【题目详解】化简可得:令,故的最小值即为的最小值,是关于的单调递增函数,易知对求导可得:当时,单调递减;当时,单调递增则有:故选:B12、C【解题分析】根据对称性求得坐标即可.【题目详解】点关于平面的对称点的坐标是,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据圆心距小于两半径之和,大于两半径之差的绝对值列出不等式解出即可.【题目详解】圆的圆心为原点,半径为,圆,即的圆心为,半径为,由于两圆相交,故,即,解得,即的取值范围是,故答案为:14、(答案不唯一)【解题分析】由题意可得0,结合在定义域上为减函数可取.【题目详解】因为在定义域为单调增函数所以在定义域上0,又因为在定义域上为减函数,且大于等于0.所以可取(),(),满足条件所以可为().故答案为:(答案不唯一).15、【解题分析】方法一:根据当线段为圆的直径时,圆周长最小,由线段的中点为圆心,其长一半为半径求解;方法二:根据当线段为圆的直径时,圆周长最小,根据以AB为直径的圆的方程求解.【题目详解】方法一:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小,即圆心为线段的中点,半径则所求圆的标准方程为方法二:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小又,,故所求圆的方程为,整理得,所以所求圆的标准方程为16、(1,1,1)【解题分析】设PD=a,则D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐标为(1,1,1)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解题分析】先假设命题、为真,分别求得实数的取值范围,再由命题、具体的真假,取实数的取值范围或其补集,最终确定实数的取值范围.【题目详解】若命题p为真,则“,”为假命题则,恒成立∴恒成立,即∴,∴.若命题q为真,则,即∴∴∵是真命题,是假命题∴命题、必为一真一假.①当p真q假时,∴;②当p假q真时,∴.综上所述:a的取值范围是或.18、(1).(2).【解题分析】(1)由已知得,均为真命题,分别求得为真命题,为真命题时,实数的取值范围,再由集合的交集运算求得答案;(2)由已知得,一真一假,建立不等式组,求解即可.【小问1详解】解:因为“且”为真命题,所以,均为真命题若为真命题,则,解得;若为真命题,则,当且仅当,即时,等号成立,此时故实数的取值范围是;【小问2详解】解:若“或”为真,“且”为假,则,一真一假当真,假时,则得;当假,真时,则得故实数的取值范围为19、(1);(2)存在,方程为和.【解题分析】(1)根据椭圆上的点、离心率和关系可构造方程求得,由此可得椭圆方程;(2)设,与椭圆方程联立可得韦达定理形式,根据共线向量可得,代入韦达定理中可构造关于的方程,解方程可求得,进而得到直线方程.【小问1详解】由题意得:,解得:,椭圆的方程为;【小问2详解】由题意知:直线斜率存在且不为零,可设,,,由得:,则;,,,,,解得:,,满足条件的直线存在,方程为和.20、(1)证明见解析;(2)证明见解析;(3).【解题分析】建立空间直角坐标系,求出各点的坐标;(1)用向量的坐标运算证明向量共面,进而证明点共面;(2)利用向量的数量积的坐标运算证明,即可;(3)确定平面EFGHKL的一个法向量,利用空间角度的向量计算公式求得答案.【小问1详解】证明:以D为原点,分别以DA,DC,所在直线为x,y,z轴建立空间直角坐标系,不妨设正方体的棱长为2.则,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它们过同一点E,所以E,F,G,H,K,L共面.【小问2详解】证明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小问3详解】由(2)知,是平面EFGHKL的一个法向量,设与平面EFGHKL所成角为,,,.所以,所以与平面EFGHKL所成角的余弦值为.21、(1);(2)直线的斜率为定值,且定值为.【解题分析】(1)根据椭圆的离心率及所过的点求出椭圆参数a、b,即可得椭圆标准方程.(2)由题设得,法一:设为,联立椭圆方程应用韦达定理求M坐标,根据与斜率关系求N的坐标,应用两点式求斜率;法二:设为,,联立椭圆方程,应用韦达定理及得到关于参数m、k的方程,即可判断是否为定值.【小问1详解】由题意,则,又,所以椭圆C方程为,代入有,解得,所以,故椭圆的标准方程为;【小问2详解】由题设易知:,法一:设直线为,由,消去y,整理得,因为方程有一个根为,所以M的横坐标为,纵坐标,故M为,用代替k,得N为,所以,故直线的斜率为定值法二:由已知直线的斜率存在,可设直线为,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,则直线过点T,不合题意,所以.即,故直线的斜率为定值.【题目点拨】关键点点睛:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年危险化学品废弃物清运及处理合同
- 2024年工程分包商环境合规审计合同
- 04年彩钢瓦安装于城市公共设施建设项目合同
- 2024全新网络安全防护服务合同
- 2024年居间贷款服务协议样本
- 2024企业级即时通讯工具开发与部署合同
- 04版技术研发与成果转化合同
- 2024商标注册全权代理合同书
- 2024就区块链技术在供应链管理中的应用合作协议
- 2024年婚纱摄影店与顾客订单合同
- 电话销售人员聘用合同
- 2024年山西电力职业技术学院单招职业适应性测试题库汇编
- 工业机器人技术分析报告
- 医院水电管理制度
- (正式版)JBT 10437-2024 电线电缆用可交联聚乙烯绝缘料
- 中职英语基础模块1课件-U5-Celebrations-1
- 脱发知识课件
- 转正述职报告个人简介
- 公开课中国式绩效管理精彩回顾
- (完整版)家具报价单模板
- 低空经济产业园定位
评论
0/150
提交评论