上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校2024年高二数学第一学期期末联考试题含解析_第1页
上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校2024年高二数学第一学期期末联考试题含解析_第2页
上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校2024年高二数学第一学期期末联考试题含解析_第3页
上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校2024年高二数学第一学期期末联考试题含解析_第4页
上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校2024年高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校2024年高二数学第一学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题“”为真命题,“”为真命题,则()A.为假命题,为真命题 B.为真命题,为真命题C.为真命题,为假命题 D.为假命题,为假命题2.椭圆的长轴长是()A.3 B.6C.9 D.43.已知直线与垂直,则为()A.2 B.C.-2 D.4.在等差数列中,,,则数列的公差为()A.1 B.2C.3 D.45.已知过点A(a,0)作曲线C:y=x•ex的切线有且仅有两条,则实数a的取值范围是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)6.等比数列中,,,则()A. B.C. D.7.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.378.下列说法中正确的是A.命题“若,则”的逆命题为真命题B.若为假命题,则均为假命题C.若为假命题,则为真命题D.命题“若两个平面向量满足,则不共线”的否命题是真命题.9.已知定义在区间上的函数,,若以上两函数的图像有公共点,且在公共点处切线相同,则m的值为()A.2 B.5C.1 D.010.已知等差数列的前n项和为,且,则()A.2 B.4C.6 D.811.圆与直线的位置关系是()A.相交 B.相切C.相离 D.不能确定12.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数在区间上的最大值是,则__________14.某厂将从64名员工中用系统抽样的方法抽取4名参加2011年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中最后一个员工的号码是__________15.已知函数,,对一切,恒成立,则实数的取值范围为________.16.已知点和,圆,当圆C与线段没有公共点时,则实数m的取值范围为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知平面直角坐标系上一动点满足:到点的距离是到点的距离的2倍.(1)求点的轨迹方程;(2)若点与点关于直线对称,求的最大值.18.(12分)已知p:,q:(1)若p是q的必要不充分条件,求实数m的范围;(2)若是的必要不充分条件,求实数m的范围19.(12分)已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.20.(12分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,数列的前项和为,求不等式的解集.21.(12分)已知数列是正项数列,,且.(1)求数列的通项公式;(2)设,数列的前项和为,若对恒成立,求实数的取值范围.22.(10分)在直角坐标系中,直线的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线的普通方程,曲线C的直角坐标方程;(2)设直线与曲线C相交于A,B两点,点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】根据复合命题的真假表即可得出结果.【题目详解】若“”为真命题,则为假命题,又“”为真命题,则至少有一个真命题,所以为真命题,即为假命题,为真命题.故选:A2、B【解题分析】根据椭圆方程有,即可确定长轴长.【题目详解】由椭圆方程知:,故长轴长为6.故选:B3、A【解题分析】利用一般式中直线垂直的系数关系列式求解.【题目详解】因为直线与垂直,故选:A.4、B【解题分析】将已知条件转化为的形式,由此求得.【题目详解】在等差数列中,设公差为d,由,,得,解得.故选:B5、A【解题分析】设出切点,对函数求导得到切点处的斜率,由点斜式得到切线方程,化简为,整理得到方程有两个解即可,解出不等式即可.【题目详解】设切点为,,,则切线方程为:,切线过点代入得:,,即方程有两个解,则有或.故答案为:A.【题目点拨】这个题目考查了函数的导函数的求法,以及过某一点的切线方程的求法,其中应用到导数的几何意义,一般过某一点求切线方程的步骤为:一:设切点,求导并且表示在切点处的斜率;二:根据点斜式写切点处的切线方程;三:将所过的点代入切线方程,求出切点坐标;四:将切点代入切线方程,得到具体的表达式.6、D【解题分析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【题目详解】解:设公比为,因为,,所以,即,解得,所以;故选:D7、C【解题分析】直接按照等差数列项数性质求解即可.【题目详解】数列的前6项之和为.故选:C.8、D【解题分析】A中,利用四种命题的的真假判断即可;B、C中,命题“”为假命题时,、至少有一个为假命题;D中,写出该命题的否命题,再判断它的真假性【题目详解】对于A,命题“若,则”的逆命题是:若,则;因为也成立.所以A不正确;对于B,命题“”为假命题时,、至少有一个为假命题,所以B错误;C错误;对于D,“平面向量满足”,则不共线的否命题是,若“平面向量满足”,则共线;由知:,一定有,,所以共线,D正确.故选:D.【题目点拨】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题9、C【解题分析】设两曲线与公共点为,分别求得函数的导数,根据两函数的图像有公共点,且在公共点处切线相同,列出等式,求得公共点的坐标,代入函数,即可求解.【题目详解】根据题意,设两曲线与公共点为,其中,由,可得,则切线的斜率为,由,可得,则切线斜率为,因为两函数的图像有公共点,且在公共点处切线相同,所以,解得或(舍去),又由,即公共点的坐标为,将点代入,可得.故选:C.10、B【解题分析】根据等差数列前n项和公式,结合等差数列下标的性质、等差数列通项公式进行求解即可.【题目详解】设等差数列的公差为,,,故选:B11、B【解题分析】用圆心到直线的距离与半径的大小判断【题目详解】解:圆的圆心到直线的距离,等于圆的半径,所以圆与直线相切,故选:B12、C【解题分析】根据题意,设抛物线的方程为,进而待定系数求解即可.【题目详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C二、填空题:本题共4小题,每小题5分,共20分。13、0【解题分析】由函数,又由,则,根据二次函数的性质,即可求解函数的最大值,得到答案.【题目详解】由函数,因为,所以,当时,则,所以.【题目点拨】本题主要考查了余弦函数的性质,以及二次函数的图象与性质,其中解答中根据余弦函数,转化为关于的二次函数,利用二次函数的图象与性质是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.14、40【解题分析】结合系统抽样的抽样方法来确定最后抽取的号码.【题目详解】因为分段间隔为,故最后一个员工的号码为.故答案为:15、【解题分析】通过分离参数,得到关于x的不等式;再构造函数,通过导数求得函数的最值,进而求得a的取值范围【题目详解】因为,代入解析式可得分离参数a可得令()则,令解得所以当0<x<1,,所以h(x)在(0,1)上单调递减当1<x,,所以h(x)在(1,+∞)上单调递增,所以h(x)在x=1时取得极小值,也即最小值所以h(x)≥h(1)=4因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4所以a的取值范围为【题目点拨】本题综合考查了函数与导数的应用,分离参数法,利用导数求函数的最值,属于中档题16、【解题分析】当点和都在圆的内部时,结合点与圆的位置关系得出实数m的取值范围,再由圆心到直线的距离大于半径得出实数m的取值范围.【题目详解】当点和都在圆的内部时,,解得或直线的方程为,即圆心到直线的距离为,当圆心到直线的距离大于半径时,,且.综上,实数m的取值范围为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)直接法求动点的轨迹方程,设点,列方程即可.(2)点关于直线对称的对称点问题,可以先求出点到直线的距离最值的两倍就是的距离,也可以求出点的轨迹方程直接求解的距离.【小问1详解】设,由题意,得:,化简得,所以点轨迹方程为【小问2详解】方法一:设,因为点与点关于点对称,则点坐标为,因为点在圆,即上运动,所以,所以点的轨迹方程为,所以两圆的圆心分别为,半径均为2,则.方法二:由可得:所以点的轨迹是以为圆心,2为半径的圆轨迹的圆心到直线的距离为:18、(1),;(2),【解题分析】解不等式,(1)由题意得,从而求得;(2)由题意可转化为是的充分不必要条件,从而得到,化简即可【小问1详解】解不等式得,是的必要不充分条件,,解得,,即实数的范围为,;小问2详解】是的必要不充分条件,是的充分不必要条件,故,解得,,即实数的范围为,19、(1);(2).【解题分析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,即.(1)若“”为真,则或,则.(2)若“”为真,则且,则.20、(1)(2)【解题分析】(1)利用与的关系求解即可;(2)首先利用裂项求和得到,从而得到,再解不等式即可.【小问1详解】令,则,当时,,当时,也符合上式,即数列的通项公式为.【小问2详解】由(1)得,则,所以故可化为:,故,故不等式的解集为.21、(1)(2)【解题分析】(1)由条件因式分解可得,从而得到,即可得出答案.(2)由(1)可得,由错位相减法求和得到,由题意即即对恒成立,分析数列的单调性,得出答案.【小问1详解】由,得∵∴∴∴数列是公比为2的等比数列.∵,∴.【小问2详解】由(1)知,∴∴①∴②①-②得∴∴由对恒成立得对恒成立即对恒成立,又是递减数列∴时得到最大值∴,即∴的取值范围是.22、(1)直线的普通方程为;曲线C的直角坐标方程为(2)【解题分析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论