版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省白城市一中2024学年高二上数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.南北朝时期杰出的数学家祖冲之的儿子祖暅在数学上也有很多创造,其最著名的成就是祖暅原理:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,现有一个圆柱体和一个长方体,它们的底面面积相等,高也相等,若长方体的底面周长为,圆柱体的体积为,根据祖暅原理,可推断圆柱体的高()A.有最小值 B.有最大值C.有最小值 D.有最大值2.已知函数,为的导数,则()A.-1 B.1C. D.3.在中,,,且BC边上的高为,则满足条件的的个数为()A.3 B.2C.1 D.04.抛物线型太阳灶是利用太阳能辐射的一种装置.当旋转抛物面的主光轴指向太阳的时候,平行的太阳光线入射到旋转抛物面表面,经过反光材料的反射,这些反射光线都从它的焦点处通过,形成太阳光线的高密集区,抛物面的焦点在它的主光轴上.如图所示的太阳灶中,灶深CD即焦点到灶底(抛物线的顶点)的距离为1m,则灶口直径AB为()A.2m B.3mC.4m D.5m5.已知数列满足,,,前项和()A. B.C. D.6.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.7.已知双曲线的左、右焦点分别为,半焦距为c,过点作一条渐近线的垂线,垂足为P,若的面积为,则该双曲线的离心率为()A.3 B.2C. D.8.抛物线的焦点是A. B.C. D.9.直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()A B.C. D.10.年1月初,中国多地出现散发病例甚至局部聚集性疫情,在此背景下,各地陆续发出“春节期间非必要不返乡”的倡议,鼓励企事业单位职工就地过年.某市针对非本市户籍并在本市缴纳社保,且春节期间在本市过年的外来务工人员,每人发放1000元疫情专项补贴.小张是该市的一名务工人员,则“他在该市过年”是“他可领取1000元疫情专项补贴”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.12.已知等差数列的前项和为,,,,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.复数的实部为_________14.定义在R上的函数满足,其中为自然对数的底数,,则满足的a的取值范围是__________.15.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________16.过点作圆的切线l,直线与l平行,则直线l过定点_________,与l间的距离为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距为4,点在G上.(1)求椭圆G方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.18.(12分)已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.19.(12分)在平面直角坐标系中,椭圆的离心率为,且点在椭圆C上(1)求椭圆C的标准方程;(2)过点的直线与椭圆C交于A,B两点,试探究直线上是否存在定点Q,使得为定值.若存在,求出定点Q的坐标及实数的值;若不存在,请说明理由20.(12分)在中,角的对边分别为,且.(1)求;(2)若,的面积为,求.21.(12分)在平面直角坐标系中,为坐标原点,曲线上点都在轴及其右侧,且曲线上的任一点到轴的距离比它到圆的圆心的距离小1(1)求曲线的方程;(2)已知过点的直线交曲线于点,若,求面积22.(10分)新疆长绒棉品质优良,纤维柔长,被世人誉为“棉中极品”,产于我国新疆的吐鲁番盆地、塔里木盆地的阿克苏、喀什等地.棉花的纤维长度是评价棉花质量的重要指标之一,在新疆某地区成熟的长绒棉中随机抽测了一批棉花的纤维长度(单位:mm),将样本数据制成频率分布直方图如下:(1)求的值;(2)估计该样本数据的平均数(同一组中的数据用该组数据区间的中点值为代表);(3)根据棉花纤维长度将棉花等级划分如下:纤维长度小于30mm大于等于30mm,小于40mm大于等于40mm等级二等品一等品特等品从该地区成熟的棉花中随机抽测两根棉花的纤维长度,用样本的频率估计概率,求至少有一根棉花纤维长度达到特等品的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由条件可得长方体的体积为,设长方体的底面相邻两边分别为,根据基本不等式,可求出底面面积的最大值,进而求出高的最小值,得出结论.【题目详解】依题意长方体的体积为,设圆柱的高为长方体的底面相邻两边分别为,,当且仅当时,等号成立,.故选:C.【题目点拨】本题以数学文化为背景,考查基本不等式求最值,要认真审题,理解题意,属于基础题.2、B【解题分析】由导数的乘法法则救是导函数后可得结论【题目详解】解:由题意,,所以.故选:B3、B【解题分析】利用等面积法求得,再利用正弦定理求得,利用内角和的关系及两角和差化积公式,二倍角公式转化为,再利用正弦函数的性质求满足条的的个数,即可求解.【题目详解】由三角形的面积公式知,即由正弦定理知所以,即,即,即利用两角和的正弦公式结合二倍角公式化简得又,则,,且由正弦函数的性质可知,满足的有2个,即满足条件的的个数为2.故选:B4、C【解题分析】建立如图所示的平面直角坐标系,设抛物线的方程为,根据是抛物线的焦点,求得抛物线的方程,进而求得的长.【题目详解】由题意,建立如图所示的平面直角坐标系,O与C重合,设抛物线的方程为,由题意可得是抛物线的焦点,即,可得,所以抛物线的方程为,当时,,所以.故选:C.5、C【解题分析】根据,利用对数运算得到,再利用等比数列的前n项和公式求解.【题目详解】解:因为,所以,则,所以数列是以为首项,为公比的等比数列,所以,故选:C6、A【解题分析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【题目详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A7、D【解题分析】根据给定条件求出,再计算面积列式计算作答.【题目详解】依题意,点,由双曲线对称性不妨取渐近线,即,则,令坐标原点为O,中,,又点O是线段的中点,因此,,则有,即,,,所以双曲线的离心率为故选:D8、D【解题分析】先判断焦点的位置,再从标准型中找出即得焦点坐标.【题目详解】焦点在轴上,又,故焦点坐标为,故选D.【题目点拨】求圆锥曲线的焦点坐标,首先要把圆锥曲线的方程整理为标准方程,从而得到焦点的位置和焦点的坐标.9、D【解题分析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【题目详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.10、B【解题分析】根据充分条件、必要条件的定义进行判定.【题目详解】只有非本市户籍并在本市缴纳社保的外来务工人员就地过年,才可领取1000元疫情专项补贴,小张是该市的一名务工人员,但他可能是本市户籍或非本市户籍但在本市未缴纳社保,所以“他在该市过年”是“他可领取1000元疫情专项补贴”的必要不充分条件.故选:B.11、C【解题分析】运用点差法即可求解【题目详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C12、A【解题分析】由可求得,利用可构造方程求得.【题目详解】,,,,,解得:.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】复数,其实部为.考点:复数的乘法运算、实部.14、【解题分析】设,求出其导数结合条件得出在上单调递减,将问题转化为求解,由的单调性可得答案.【题目详解】设,则由,则所以在上单调递减.又由,即,即,所以故答案为:15、【解题分析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【题目详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:16、①.②.##2.4【解题分析】利用直线与平行,结合切线的性质求出切线的方程,即可确定定点坐标,再利用两条平行线间的距离公式求两线距离.【题目详解】由题意,直线斜率,设直线的方程为,即∴直线l过定点,由与圆相切,得,解得,∴的方程为,的方程为,则两直线间的距离为故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据已知求出即得椭圆的方程;(2)设l的方程为,,,联立直线和椭圆的方程得到韦达定理,根据得到,即得直线l的方程.【小问1详解】解:椭圆的焦距是4,所以焦点坐标是,.因为点在G上,所以,所以,.所以椭圆G的方程是.【小问2详解】解:显然直线l不垂直于x轴,可设l的方程为,,,将直线l的方程代入椭圆G的方程,得,则,.因为,所以,则,即,由,得,.所以,解得,即,所以直线l的方程为.18、(1);(2),a的取值范围为.【解题分析】(1)先连结,由为等边三角形,得到,,;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点存在,当且仅当,,,根据三个式子联立,结合题中条件,即可求出结果.【题目详解】(1)连结,由等边三角形可知:在中,,,,于是,故椭圆C的离心率为;(2)由题意可知,满足条件的点存在,当且仅当,,,即①②③由②③以及得,又由①知,故;由②③得,所以,从而,故;当,时,存在满足条件的点.故,a的取值范围为.【题目点拨】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.19、(1)(2)存在,定点的坐标为,实数的值为【解题分析】(1)由题意可得,再结合,可求出,从而可求得椭圆方程,(2)设在直线上存在定点,当直线斜率存在时,设过点P的动直线l为,设,,将直线方程代入椭圆方程消去,利用根与系数,再计算为常数可求出,从而可求得,当直线斜率不存在时,可求出两点的坐标,从而可求得的值【小问1详解】由题意知结合,可得,所以椭圆C的标准方程为,【小问2详解】设在直线上存在定点,使为定值,①当直线斜率存在时,设过点P的动直线l为,设,·由得,则,,所以为常数则,解之得,即定点为,则②当直线斜率不存在时,即动直线方程为,不妨设,,此时也成立所以,存在定点使为定值,即20、(1);(2).【解题分析】(1)由正弦定理得到,两边消去公因式得到,化一即可求得角A;(2)因为,所以,再结合余弦定理得到结果.【题目详解】(1)由,得,因为,所以,整理得:,因,所以.(2)因为,所以,因为及,所以,即.【题目点拨】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.21、(1)(2)【解题分析】(1)由题意直接列或根据抛物线的定义求轨迹方程(2)待定系数法设直线方程,联立直线与抛物线方程,根据抛物线的定义,利用韦达定理解出直线方程,再求面积【小问1详解】解法1:配方法可得圆的方程为,即圆的圆心为,设的坐标为,由已知可得,化简得,曲线的方程为解法2:配方可得圆的方程为,即圆的圆心为,由题意可得上任意一点到直线的距离等于该点到圆心的距离,由抛物线的定义可得知,点的轨迹为以点为焦点的抛物线,所以曲线的方程为【小问2详解】抛物
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农业技术培训讲师聘用合同
- 2025年炉渣综合利用项目可行性研究报告合同4篇
- 二零二五年度农业科技项目推广与应用合同4篇
- 二零二五年度电动车电池更换与维修服务合同4篇
- 2025年度智能化水井建设及维护服务合同集4篇
- 2025年度出租车座套定制及售后服务合同4篇
- 2025年度苗木养护与生态修复技术合同4篇
- 二零二五年度茅台酒经销商信用评价及激励政策合同4篇
- 二零二五年度体育培训中心赞助及管理服务合同范本
- 2025年婚礼旅行套餐合同
- 2025届北京巿通州区英语高三上期末综合测试试题含解析
- 公婆赠予儿媳妇的房产协议书(2篇)
- 煤炭行业智能化煤炭筛分与洗选方案
- 2024年机修钳工(初级)考试题库附答案
- Unit 5 同步练习人教版2024七年级英语上册
- 矽尘对神经系统的影响研究
- 分润模式合同模板
- 海南省汽车租赁合同
- 2024年长春医学高等专科学校单招职业适应性测试题库必考题
- (正式版)SHT 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范
- 2023年山东济南市初中学业水平考试地理试卷真题(答案详解)
评论
0/150
提交评论