




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省阳江市阳东广雅中学2024届数学高二上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆与圆,则两圆的位置关系是()A.外切 B.内切C.相交 D.相离2.若圆C:上有到的距离为1的点,则实数m的取值范围为()A. B.C. D.3.函数的图像在点处的切线方程为()A. B.C. D.4.已知两条直线:,:,且,则的值为()A.-2 B.1C.-2或1 D.2或-15.过点且与直线平行的直线方程是()A. B.C. D.6.某市2016年至2020年新能源汽车年销量y(单位:百台)与年份代号x的数据如下表:年份20162017201820192020年份代号x01234年销量y1015m3035若根据表中的数据用最小二乘法求得y关于x的回归直线方程为,则表中m的值为()A.22 B.20C.30 D.32.57.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.28.已知抛物线,过点与抛物线C有且只有一个交点的直线有()条A.0 B.1C.2 D.39.瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.() B.()C.() D.()10.已知函数在处有极小值,则c的值为()A.2 B.4C.6 D.2或611.已知数列是公差为等差数列,,则()A.1 B.3C.6 D.912.若双曲线一条渐近线被圆所截得的弦长为,则双曲线的离心率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数是上的增函数,则实数的取值范围是__________.14.在学习《曲线与方程》的课堂上,老师给出两个曲线方程;,老师问同学们:你想到了什么?能得到哪些结论?下面是四位同学的回答:甲:曲线关于对称;乙:曲线关于原点对称;丙:曲线与坐标轴在第一象限围成的图形面积;丁:曲线与坐标轴在第一象限围成的图形面积;四位同学回答正确的有______(选填“甲、乙、丙、丁”)15.函数是R上的单调递增函数,则a的取值范围是______16.若函数在区间上单调递减,则实数的取值范围是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p:实数x满足(其中);命题q:实数x满足(1)若,为真命题,求实数x的取值范围;(2)若p是q的充分条件,求实数的取值范围18.(12分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.19.(12分)已知三个条件①圆心在直线上;②圆的半径为2;③圆过点在这三个条件中任选一个,补充在下面的问题中,并作答(注:如果选择多个条件分别解答,按第一个解答计分)(1)已知圆过点且圆心在轴上,且满足条件________,求圆的方程;(2)在(1)的条件下,直线与圆交于、两点,求弦长的最小值及相应的值20.(12分)已知等差数列和正项等比数列满足(1)求的通项公式;(2)求数列的前n项和21.(12分)如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且,,,(1)求证:;(2)求直线与平面所成角的正弦值;(3)线段上是否存在点,使得直线平面?若存在,求的值;若不存在,请说明理由22.(10分)“绿水青山就是金山银山”,中国一直践行创新、协调、绿色、开放、共享的发展理念,着力促进经济实现高质量发展,决心走绿色、低碳、可持续发展之路.新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向工业部表示,到2025年我国新能源汽车销量占总销量将达20%以上.2021年,某集团以20亿元收购某品牌新能源汽车制造企业,并计划投资30亿元来发展该品牌.2021年该品牌汽车的销售量为10万辆,每辆车的平均销售利润为3000元.据专家预测,以后每年销售量比上一年增加10万辆,每辆车的平均销售利润比上一年减少10%(1)若把2021年看作第一年,则第n年的销售利润为多少亿元?(2)到2027年年底,该集团能否通过该品牌汽车实现盈利?(实现盈利即销售利润超过总投资,参考数据:,,)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】求得两圆的圆心和半径,再根据圆心距与半径之和半径之差的关系,即可判断位置关系.【题目详解】对圆,其圆心,半径;对圆,其圆心,半径;又,故两圆外切.故选:A.2、C【解题分析】利用圆与圆的位置关系进行求解即可.【题目详解】将圆C的方程化为标准方程得,所以.因为圆C上有到的距离为1的点,所以圆C与圆:有公共点,所以因为,所以,解得,故选:C3、B【解题分析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.详解】,,,,因此,所求切线的方程为,即.故选:B.【题目点拨】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题4、B【解题分析】两直线平行,倾斜角相等,斜率均不存在或斜率存在且相等,据此即可求解.【题目详解】:,:斜率不可能同时不存在,∴和斜率相等,则或,∵m=-2时,和重合,故m=1.另解:,故m=1.故选:B.5、A【解题分析】由题意设直线方程为,根据点在直线上求参数即可得方程.【题目详解】由题设,令直线方程为,所以,可得.所以直线方程为.故选:A.6、B【解题分析】求出样本中心的横坐标,代入回归直线方程,求出样本中心的纵坐标,然后求解即可【题目详解】因为,代入回归直线方程为,所以,,于是得,解得故选:B7、A【解题分析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【题目详解】点关于坐标原点的对称点是故选:A8、D【解题分析】设出过点与抛物线C只有一个公共点且斜率存在的直线方程,再与的方程联立借助判别式计算、判断作答.【题目详解】抛物线的对称轴为y轴,直线过点P且与y轴平行,它与抛物线C只有一个公共点,设过点与抛物线C只有一个公共点且斜率存在的直线方程为:,由消去y并整理得:,则,解得或,因此,过点与抛物线C相切的直线有两条,相交且只有一个公共点的直线有一条,所以过点与抛物线C有且只有一个交点的直线有3条.故选:D9、A【解题分析】根据题意,求得的外心,再根据外心的性质,以及重心的坐标,联立方程组,即可求得结果.【题目详解】因为,故的斜率,又的中点坐标为,故的垂直平分线的方程为,即,故△的外心坐标即为与的交点,即,不妨设点,则,即;又△的重心的坐标为,其满足,即,也即,将其代入,可得,,解得或,对应或,即或,因为与点重合,故舍去.故点的坐标为.故选:A.10、A【解题分析】根据求出c,进而得到函数的单调性,然后根据极小值的定义判断答案.【题目详解】由题意,,则,所以或.若c=2,则,时,,单调递增,时,,单调递减,时,,单调递增.函数在处有极小值,满足题意;若c=6,则,函数R上单调递增,不合题意.综上:c=2.故选:A.11、D【解题分析】结合等差数列的通项公式求得.【题目详解】设公差,.故选:D12、A【解题分析】根据(为弦长,为圆半径,为圆心到直线的距离),求解出的关系式,结合求解出离心率的值.【题目详解】取的一条渐近线,因为(为弦长,为圆半径,为圆心到直线的距离),其中,所以,所以,所以,所以,所以,故选:A.【题目点拨】关键点点睛:解答本题的关键是利用几何法表示出圆的半径、圆心到直线的距离、半弦长之间的关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由题意知在上恒成立,从而结合一元二次不等式恒成立问题,可列出关于的不等式,进而可求其取值范围.【题目详解】解:由题意知,知在上恒成立,则只需,解得.故答案为:.【题目点拨】本题考查了不等式恒成立问题,考查了运用导数探究函数的单调性.一般地,由增函数可得导数不小于零,由减函数可得导数不大于零.对于一元二次不等式在上恒成立问题,如若在上恒成立,可得;若在上恒成立,可得.14、甲、乙、丙、丁【解题分析】结合对称性判断甲、乙的正确性;通过对比和与坐标轴在第一象限围成的图形面积来判断丙丁的正确性.【题目详解】对于甲:交换方程中和的位置得,所以曲线关于对称,甲回答正确.对于乙:和两个点都满足方程,所以曲线关于原点对称,乙回答正确.对于丙:直线与坐标轴在第一象限围成的图形面积为,,,在第一象限,直线与曲线都满足,,,所以在第一象限,直线的图象在曲线的图象上方,所以,丙回答正确.对于丁:圆与坐标轴在第一象限围成的图形面积为,在第一象限,曲线与曲线都满足,,,,所以在第一象限,曲线的图象在曲线的图象下方,所以,丁回答正确.故答案为:甲、乙、丙、丁15、【解题分析】对求导,由题设有恒成立,再利用导数求的最小值,即可求a的范围.【题目详解】由题设,,又在R上的单调递增函数,∴恒成立,令,则,∴当时,则递减;当时,则递增.∴,故.故答案为:.16、【解题分析】求解定义域,由导函数小于0得到递减区间,进而得到不等式组,求出实数的取值范围.【题目详解】显然,且,由,以及考虑定义域x>0,解得:.在区间,上单调递减,∴,解得:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由得命题p:,然后由为真命题求解;(2)由得,再根据是的充分条件求解.小问1详解】当时,,解得:,由为真命题,,解得;【小问2详解】由(其中)可得,因为是的充分条件,则,解得:18、(1)证明见解析(2)证明见解析【解题分析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2)由已知可得AB⊥BC,VC⊥AC,再由已知结合面面垂直的性质定理可得VC⊥平面ABC,从而有AB⊥VC,然后由线面垂直的判定定理可证得结论【小问1详解】证明:∵M,N分别为VA,VB的中点,∴MN∥AB,∵AB⊄平面CMN,MN⊂平面CMN,∴AB∥平面CMN【小问2详解】证明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB⊂平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC19、(1)条件选择见解析,圆的方程为(2)的最小值为,相应【解题分析】(1)选择条件①或②或③,求得圆心和半径,由此求得圆的方程.(2)首先求得直线过定点,根据求得最短弦长以及此时的值.【小问1详解】若选条件①,由题意知,圆心是方程的解,解得,所以,设半径为,则.则圆的方程为:若选条件②,设圆心,由题意知,所以圆心,半径为,所以圆的方程为:若选条件③,设圆心,由题意知,即有,解得,圆心为,且半径为,所以圆的方程为:【小问2详解】由(1)圆的方程为:,圆心为,半径.直线过定点,要使弦长最短,,,,,直线的斜率,也即直线的斜率为,所以.,,所以弦长最小值为20、(1);(2)【解题分析】(1)根据条件列公差与公比方程组,解得结果,代入等差数列通项公式即可;(2)根据等比数列求和公式直接求解.【题目详解】(1)设等差数列公差为,正项等比数列公比为,因为,所以因此;(2)数列的前n项和【题目点拨】本题考查等差数列以及等比数列通项公式、等比数列求和公式,考查基本分析求解能力,属基础题.21、(1)证明见解析(2)(3)存在点,使得平面,且【解题分析】(1)由面面垂直的性质可得平面,再由线面垂直的性质可证得结论,(2)可证得两两垂直,所以分别以为轴,轴,轴建立空间直角坐标系,利用空间向量求解,(3)设,然后利用空间向量求解【小问1详解】证明:因为为正方形,所以又因为平面平面,且平面平面,所以平面平面所以;【小问2详解】由(1)可知,平面,所以,因为,所以两两垂直分别以为轴,轴,轴建立空间直角坐标系(如图)因为,,所以,所以,设平面的一个法向量为,则,即令,则,;所以设直线与平面所成角为,则直线与平面所成角为的正弦值为;【小问3详解】设,易知设,则,所以,所以,所以设平面的一个法向量为,则,因为,所以令,则,所以在线段上存在点,使得平面等价于存在,使得因为,由,所以,解得,所以线段上存在点,使得平面,且22、(1)亿元(2)该集团能通过该品牌汽车实现盈利【解题分析】(1)由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能化物业保安聘用劳动合同
- 二零二五年度农业科技企业人才招聘与乡村振兴协议
- 二零二五年度电子产品研发团队激励与考核合同
- 二零二五年度高新技术企业岗位聘用协议书(研发人员)
- 公墓墓位买卖与墓园墓碑雕刻服务协议
- 二零二五年度大数据公司股东合伙人合作协议
- 2025年度餐饮业员工入职劳动合同及员工培训与晋升协议
- 2025年度演员聘用与影视作品配音及字幕制作合同
- 二零二五年度文化传播计件工资服务协议
- 二零二五年度人力资源合同转让三方协议
- 上海市建设工程施工图设计文件勘察设计质量疑难问题汇编(2024 版)
- 第一单元时、分、秒(说课稿)-2024-2025学年三年级上册数学人教版
- 地理-浙江省杭州八县市2024学年高二第一学期期末学业水平测试试题和答案
- 《康复工程学》课件-第一讲 康复工程概论
- DeepSeek:从入门到精通
- 2025年度智慧医疗服务平台建设合同范本
- 2024项目管理人员安全培训考试题(审定)
- 2025年铜材拉丝项目可行性研究报告
- 2024 年国家公务员考试《申论》(地市级)真题及答案
- 南京2025年中国医学科学院皮肤病医院招聘13人第二批笔试历年典型考点(频考版试卷)附带答案详解
- 2024年沈阳职业技术学院高职单招语文历年参考题库含答案解析
评论
0/150
提交评论