弹性力学张量_第1页
弹性力学张量_第2页
弹性力学张量_第3页
弹性力学张量_第4页
弹性力学张量_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

弹性力学张量第一页,共八十二页,编辑于2023年,星期日1.1指标记法1.1.1求和约定、哑指标第一章张量代数第二页,共八十二页,编辑于2023年,星期日1.1基本概念

1.

标量:只有大小、没有方向性的物理量,与坐标系选择无关。用字母表示,如温度T、时间t、密度

等。标量无下标。2.

矢量:有大小,又有方向性的物理量。

如矢径

(或黑体)、位移

、力

等。矢量可用一个方向来确定。

x3x2x1r其中

、、为坐标的基矢量(单位向量、基矢),r1、r2、r3为r在坐标轴的投影(分量),都有一个下标。

第三页,共八十二页,编辑于2023年,星期日记法:(1)实体记法:(或黑体字母)r(2)分解式记法:同时写出矢量的分量和相应分解分量的基。(3)分量记法:将矢量用其全部分量的集合来表示r(r1、r2、r3

)(4)矩阵记法:第四页,共八十二页,编辑于2023年,星期日3,张量:有大小,并具有多重方向性的量(可描述更复杂的物理量)。如应力

、应变。

有些量不能只利用一个方向来确定。如应力:它与两个方向有关在方向(为作用面的法矢),应力矢为;而在方向,应力矢为这说明应力矢本身有方向,而且还与其作用面方向有关,必须用两个方向才能描述应力矢。第五页,共八十二页,编辑于2023年,星期日11

eexxs

31

eexzt21

eexyt

常用的应力单元体也是如此:

每一个应力分量也必须用两个方向才能描述,第一个方向为应力作用面的方向,第一个方向为应力作用的方向。每个分量用一个标量(具有两个下标)与两个并在一起基矢量(并矢)表示,称为二阶张量。

于是引入二阶基:

第六页,共八十二页,编辑于2023年,星期日故矢量可称为一阶张量,标量为零阶张量。标量由1个分量组成,矢量由3个分量组成,二阶张量由9个分量组成;三阶张量由27个分量组成,n阶张量由3n个分量组成。

从数学上说,可引入

阶基,阶基中有个基矢。与阶基相关连的量称为阶张量。

时为标量;时为矢量;时为二阶张量(简称张量)。第七页,共八十二页,编辑于2023年,星期日1.2张量表示

1.2.1.下标记号法——张量的最简洁的一种表示方法

点的坐标(x,y,z)(矢径)点的位移(u,v,w)

点的速度应力(张量):

第八页,共八十二页,编辑于2023年,星期日应力张量可表示为(i=1,2,3;j=1,2,3)

第九页,共八十二页,编辑于2023年,星期日应变张量:

应变张量可表示为(i=1,2,3;j=1,2,3)第十页,共八十二页,编辑于2023年,星期日微分符号:第十一页,共八十二页,编辑于2023年,星期日约定:英文字母下标表示三维指标,取值1,2,3.在该约定下,上述简写表达式后的说明或在以后的写法中将被略去。

n阶张量可表示为

第十二页,共八十二页,编辑于2023年,星期日1.2.2求和约定

Einstein求和约定)矢量点积的实例

设为两矢量,其分量分别记为,则:哑标:在表达式的某项中,若某指标重复出现两次,则表示要把该项指标在取值范围内遍历求和。该重复指标称为“哑标”或“伪标”。

第十三页,共八十二页,编辑于2023年,星期日显然,指标i,j,k与求和无关,可用任意字母代替。为简化表达式,引入Einstein求和约定:每逢某个指标在一项中重复一次,就表示对该指标求和,指标取遍正数1,2,…,n。这样重复的指标称为哑标。于是*1、哑标的符号可以任意改变(仅表示求和)

第十四页,共八十二页,编辑于2023年,星期日是违约的,求和时要保留求和号*2、哑标只能成对出现,否则要加上求和号或特别指出

*3、同项中出现两对(或多对)不同哑标表示多重求和

双重求和展开式(9项)第十五页,共八十二页,编辑于2023年,星期日三重求和(27项)n表示空间的维数,以后无特别说明,我们总取n=3。例题:第十六页,共八十二页,编辑于2023年,星期日含偏导数项的下标记号表示法:

*若重复出现的标号不求和,应特别声明

第十七页,共八十二页,编辑于2023年,星期日1.2.3自由指标例如指标i在方程的各项中只出现一次,称之为自由指标。一个自由指标每次可取整数1,2,3,…,n,与哑标一样,无特别说明总取n=3。于是,上式表示3个方程的缩写:一个表达式中如果出现非重复的标号或一个方程每项中出现非重复的的指标,称为自由指标。对于自由指标可以从最小数取到最大数。

第十八页,共八十二页,编辑于2023年,星期日*1、自由指标仅表示为轮流取值,因此也可以换标,但必须整个表达式换标;

出现双重指标但不求和时,在指标下方加划线以示区别,或用文字说明(如i不求和)。规定:这里i相当于一个自由指标,而i只是在数值上等于i,并不与i

求和。

*2若重复出现的标号不求和的表示:第十九页,共八十二页,编辑于2023年,星期日又如,方程用指标法表示,可写成i

不参与求和,只在数值上等于i

*3由不能得出.第二十页,共八十二页,编辑于2023年,星期日i为自由指标,j为哑标表示如下3个方程:

例题:第二十一页,共八十二页,编辑于2023年,星期日表示如下3个方程:

i为自由指标,j为哑标等价为

第二十二页,共八十二页,编辑于2023年,星期日i,j为自由指标,k为哑标表示9个方程:……第二十三页,共八十二页,编辑于2023年,星期日1.3Kronecker符号在卡氏直角坐标系下,Kronecker符号定义为:其中i,j为自由指标,取遍1,2,3;因此,可确定一单位矩阵:(kronecherdelta)

第二十四页,共八十二页,编辑于2023年,星期日符号的性质:

对称性

可进行换标或运算

笛卡尔坐标系的基向量的点积第二十五页,共八十二页,编辑于2023年,星期日若是相互垂直的单位矢量,则,但而,故第二十六页,共八十二页,编辑于2023年,星期日注意:是一个数值,即的作用:1)换指标;2)选择求和。例1:思路:把要被替换的指标i变成哑标,哑标能用任意字母,因此可用变换后的字母k表示第二十七页,共八十二页,编辑于2023年,星期日例2:例3:个数,项的和。求特别地,如果

ij符号的两个指标中有一个指标和同项中其它因子的指标相重,则可以把该因子的那个重指标替换成ij的另一个指标,而ij自动消失。ij

也称为换标符号。

第二十八页,共八十二页,编辑于2023年,星期日符号的应用

矢量与代数运算

两个任意向量点积

微分运算

第二十九页,共八十二页,编辑于2023年,星期日第三十页,共八十二页,编辑于2023年,星期日1.4置换符号(PermutatisnSymbol)

一、定义:1123123第三十一页,共八十二页,编辑于2023年,星期日例如:

eijk

(i,j,k=1,2,3)

共有27个元素

123(不为0的共六项,三项为正1,三项为负1)。第三十二页,共八十二页,编辑于2023年,星期日可见:也称为三维空间的排列符号。表明,标号改变奇次位置时改变正、负号;标号改变偶数次位置时不改变符号。排列符号的应用:

排列符号的作用可以简化公式书写

1.

三阶行列式:(共六项,三项为正,三项为负)。

二、第三十三页,共八十二页,编辑于2023年,星期日2.基向量的叉积:右手系

任意基向量的叉积可写为

3.向量叉积的展开式:

第三十四页,共八十二页,编辑于2023年,星期日三、常见的恒等式(i)(ii)(iii)(iv)之关系

第三十五页,共八十二页,编辑于2023年,星期日证明:令即得(i),将(i)作相应的指标替换,展开化简,将得其余三式。指标任意排列,经过行列调整总可用右边表示,两个置换符号分别反映行、列调换及指标重复时的正、负及零(i)第三十六页,共八十二页,编辑于2023年,星期日另证:由矢量恒等式

反复运用式,有

另一方面

(a)(b)第三十七页,共八十二页,编辑于2023年,星期日(a)(b)代入有(矢量恒等则矢量的各分量应相等)由于对任意的

上式均成立:

若将上式中的下标s换为j有

第三十八页,共八十二页,编辑于2023年,星期日若将上式中的下标t换为k,

第三十九页,共八十二页,编辑于2023年,星期日二维置换符号其中从三维退化得到有下列恒等式第四十页,共八十二页,编辑于2023年,星期日关键公式:第四十一页,共八十二页,编辑于2023年,星期日二维关键公式:第四十二页,共八十二页,编辑于2023年,星期日1.5指标记法的运算1.5.1代入设(1)(2)把(2)代入(1)mnorelse3个方程,右边为9项之和第四十三页,共八十二页,编辑于2023年,星期日1.5指标记法的运算1.4.2乘积设则不符合求和约定第四十四页,共八十二页,编辑于2023年,星期日1.5指标记法的运算1.4.3因式分解考虑第一步用表示有换指标的作用所以即第四十五页,共八十二页,编辑于2023年,星期日1.5指标记法的运算1.5.4缩并使两个指标相等并对它们求和的运算称为缩并。如各向同性材料应力应变关系缩并哑标与求和无关,可用任意字母代替为平均应力应变之间的关系第四十六页,共八十二页,编辑于2023年,星期日1.5指标记法的运算1.4.5例题——熟悉指标记法和普通记法的转换求和约定同样适用于微分方程。不可压缩牛顿流体的连续性方程:其普通记法或第四十七页,共八十二页,编辑于2023年,星期日1.5指标记法的运算1.4.5例题——熟悉指标记法和普通记法的转换不可压缩牛顿流体的Navier-Stokes方程:写出其普通记法第四十八页,共八十二页,编辑于2023年,星期日1.5指标记法的运算1.4.5例题——熟悉指标记法和普通记法的转换弹性力学平衡方程方程:写出其指标记法第四十九页,共八十二页,编辑于2023年,星期日1.5张量的定义1.5.1坐标系的变换关系(笛卡儿右手直角坐标系)坐标的旋转变换oxyABcD引例:(平面直角坐标系)第五十页,共八十二页,编辑于2023年,星期日新旧基矢量夹角的方向余弦:旧坐标系:单位基矢量:新坐标系:单位基矢量:x3x2x1x3x2x1第五十一页,共八十二页,编辑于2023年,星期日1.5.1坐标系的变换关系

旧新x3x2x1x3x2x1第五十二页,共八十二页,编辑于2023年,星期日图解(二维):在解析式中记:第五十三页,共八十二页,编辑于2023年,星期日1.5.1坐标系的变换关系从坐标变换的角度研究标量、矢量和张量(对i求和,为自由指标)张量的性质:

张量不是对称张量

1)因为,而,所以

x3x2x1x3x2x1第五十四页,共八十二页,编辑于2023年,星期日张量是正交张量

张量的转置记为

第一式两边乘以

第二式两边乘以,有于是

或第五十五页,共八十二页,编辑于2023年,星期日1.5.2标量(纯量Scalar)在坐标变换时其值保持不变,即满足如数学中的纯数,物理中的质量、密度、温度等。时间是否标量?第五十六页,共八十二页,编辑于2023年,星期日1.5.3矢量(Vector)设a为任意矢量,其在新、旧坐标系下的分量分别为即(对i’

求和)(对i求和)满足以下变换关系的三个量定义一个矢量第五十七页,共八十二页,编辑于2023年,星期日1.5.3矢量(Vector)哑标换成k

比较上式两边,得即该变换是正交的第五十八页,共八十二页,编辑于2023年,星期日1.5.4张量(Tensor)对于直角坐标系,有九个量按照关系变换成中的九个量则此九个量定义一个二阶张量。将矢量定义加以推广:(增加指标和相应的变换系数)第五十九页,共八十二页,编辑于2023年,星期日第六十页,共八十二页,编辑于2023年,星期日第六十一页,共八十二页,编辑于2023年,星期日第六十二页,共八十二页,编辑于2023年,星期日1.6张量的分量

设ei为卡氏直角坐标系xi轴的单位基矢量,a为任一矢量,其分量为ai,于是

第六十三页,共八十二页,编辑于2023年,星期日对于一个二阶张量T,它可以将a变换成另一个矢量b,即

称为二阶张量T的分量

令第六十四页,共八十二页,编辑于2023年,星期日可理解为矢量T·ej在ei上的分量,即

第六十五页,共八十二页,编辑于2023年,星期日因此,有下面三种等价的表达式:

第六十六页,共八十二页,编辑于2023年,星期日其中称为在基矢量组{e1,e2,e3}下二阶张量T的矩阵。注意:矢量a、b及张量T本身与坐标系无关,但其分量ai,bi,Tij

通过基矢量组{e1,e2,e3}与坐标系相关。

第六十七页,共八十二页,编辑于2023年,星期日1.7.1张量的加法和减法

设T、S均为二阶张量,将它们的和、差用下式表示:

仍为二阶张量。第六十八页,共八十二页,编辑于2023年,星期日若a为一矢量,则

其分量为:

其矩阵形式为:

第六十九页,共八十二页,编辑于2023年,星期日1.7.2张量和标量的乘积

设T为二阶张量,为一标量,它们的乘积记为,则

仍为二阶张量。第七十页,共八十二页,编辑于2023年,星期日因为根据坐标变换,有

可见,为二阶张量。

第七十一页,共八十二页,编辑于2023年,星期日1.7.3并矢积、并矢记法、基张量

矢量a和矢量b的并矢积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论