黑龙江省哈尔滨市六中2024年高二数学第一学期期末教学质量检测模拟试题含解析_第1页
黑龙江省哈尔滨市六中2024年高二数学第一学期期末教学质量检测模拟试题含解析_第2页
黑龙江省哈尔滨市六中2024年高二数学第一学期期末教学质量检测模拟试题含解析_第3页
黑龙江省哈尔滨市六中2024年高二数学第一学期期末教学质量检测模拟试题含解析_第4页
黑龙江省哈尔滨市六中2024年高二数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市六中2024年高二数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.72.如图,双曲线的左,右焦点分别为,,过作直线与C及其渐近线分别交于Q,P两点,且Q为的中点.若等腰三角形的底边的长等于C的半焦距.则C的离心率为()A. B.C. D.3.抛物线准线方程为()A. B.C. D.4.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B.C. D.5.空间四点共面,但任意三点不共线,若为该平面外一点且,则实数的值为()A. B.C. D.6.下列直线中,倾斜角为45°的是()A. B.C. D.7.已知双曲线C:(a>0,b>0),斜率为的直线与双曲线交于不同的两点,且线段的中点为P(2,4),则双曲线的渐近线方程为()A. B.C. D.8.直线的倾斜角为()A.-30° B.60°C.150° D.120°9.在平面直角坐标系中,直线+的倾斜角是()A. B.C. D.10.已知,设函数,若关于的不等式恒成立,则的取值范围为()A. B.C. D.11.若直线与平行,则实数m等于()A.1 B.C.4 D.012.已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.命题“x≥1,x2-2x+4≥0”的否定为____________.14.若正数x、y满足,则的最小值等于________.15.已知数列都是等差数列,公差分别为,数列满足,则数列的公差为__________16.已知是首项为,公差为1的等差数列,数列满足,若对任意的,都有成立,则实数的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为增强市民的环境保护意识,某市面向全市征召若干名宣传志愿者,成立环境保护宣传小组,现把该小组的成员按年龄分成、、、、这组,得到的频率分布直方图如图所示,已知年龄在内的人数为.(1)若用分层抽样的方法从年龄在、、内的志愿者中抽取名参加某社区的宣传活动,再从这名志愿者中随机抽取名志愿者做环境保护知识宣讲,求这名环境保护知识宣讲志愿者中至少有名年龄在内的概率;(2)在(1)的条件下,记抽取的名志愿者分别为甲、乙,该社区为了感谢甲、乙作为环境保护知识宣讲的志愿者,给甲、乙各随机派发价值元、元、元的纪念品一件,求甲的纪念品不比乙的纪念品价值高的概率.18.(12分)如图,在四棱锥中,底面四边形为角梯形,,,,O为的中点,,.(1)证明:平面;(2)若,求平面与平面所成夹角的余弦值.19.(12分)已知函数,,其中.(1)试讨论函数的单调性;(2)若,证明:.20.(12分)已知数列满足,且,,成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求的最小值及此时的值.21.(12分)2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.汽车行业是碳排放量比较大的行业之一,若现对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xy160经测算发现,乙类品牌车CO2排放量的均值为乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.22.(10分)已知函数,.(1)若,求曲线在点处的切线方程;(2)若函数在上是减函数,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【题目详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D2、C【解题分析】先根据等腰三角形的性质得,再根据双曲线定义以及勾股定理列方程,解得离心率.【题目详解】连接,由为等腰三角形且Q为的中点,得,由知.由双曲线的定义知,在中,,(负值舍去)故选:C【题目点拨】本题考查双曲线的定义、双曲线的离心率,考查基本分析求解能力,属基础题.3、D【解题分析】由抛物线的准线方程即可求解【题目详解】由抛物线方程得:.所以,抛物线的准线方程为故选D【题目点拨】本题主要考查了抛物线的准线方程,属于基础题4、B【解题分析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【题目详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【题目点拨】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.5、A【解题分析】由空间向量共面定理构造方程求得结果.【题目详解】空间四点共面,但任意三点不共线,,解得:.故选:A.6、C【解题分析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【题目详解】由直线倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C7、C【解题分析】设,代入双曲线方程相减后可求得,从而得渐近线方程【题目详解】设,则,相减得,∴,又线段的中点为P(2,4),的斜率为1,∴,,∴渐近线方程为故选:C【题目点拨】方法点睛:本题考查求双曲线的渐近线方程,已知弦的中点(或涉及到中点),可设弦两端点的坐标,代入双曲线方程后作差,作差后式子中有直线的斜率,弦中点坐标,有.这种方法叫点差法8、C【解题分析】根据直线斜率即可得倾斜角.【题目详解】设直线的倾斜角为由已知得,所以直线的斜率,由于,故选:C.9、B【解题分析】由直线方程得斜率,从而得倾斜角【题目详解】由直线方程知直角斜率为,在上正切值为1的角为,即为倾斜角故选:B10、D【解题分析】由题设易知上恒成立,而在上,讨论、,结合导数研究的最值,由不等式恒成立求的取值范围.【题目详解】由时,在上;由时,在上递减,值域为;令且,则,当时,,即递增,值域为,满足题设;当时,在上,即递减,在上,即递增,此时值域为;当,即时存在,而在中,此时,不合题设;所以,此时要使的不等式恒成立,只需,即,可得;综上,关于的不等式恒成立,则的取值范围为.故选:D【题目点拨】关键点点睛:由题设易知上,只需在上恒有即可.11、B【解题分析】两直线平行的充要条件【题目详解】由于,则,.故选:B12、A【解题分析】计算双曲线的焦点为,离心率,得到椭圆的焦点为,离心率,计算得到答案.【题目详解】双曲线的焦点为,离心率,故椭圆的焦点为,离心率,即.解得,故椭圆标准方程为:.故选:.【题目点拨】本题考查了椭圆和双曲线的离心率,焦点,椭圆的标准方程,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据还有一个量词的命题的否定的方法解答即可.【题目详解】命题“x≥1,x2-2x+4≥0”的否定为“”.故答案为:.14、9【解题分析】把要求的式子变形为,利用基本不等式即可得结果.【题目详解】因为,所以,当且仅当时取等号,故答案为.【题目点拨】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).15、##【解题分析】利用等差数列的定义即得.【题目详解】∵数列都是等差数列,公差分别为,数列满足,∴.故答案为:.16、【解题分析】先求得,再得出,对于任意的,都有成立,说明是中的最小项【题目详解】由题意,∴,易知函数在和上都是减函数,且时,,即,时,,,由题意对于任意的,都有成立,则是最小项,∴,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)将名志愿者进行编号,列举出所有的基本事件,并确定所求事件所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率;(2)列举出甲、乙获得纪念品价值的所有情况,并确定所求事件所包含的情况,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:因为志愿者年龄在、、内的频率分别为、、,所以用分层抽样的方法抽取的名志愿者年龄在、、内的人数分别为、、.记年龄在内的名志愿者分别记为、、,年龄在的名志愿者分别记为、,年龄在内的名志愿者记为,则从中抽取名志愿者的情况有、、、、、、、、、、、、、、,共种可能;而至少有名志愿者的年龄在内的情况有、、、、、、、、,共种可能.所以至少有名志愿者的年龄在内的概率为.【小问2详解】解:甲、乙获得纪念品价值的情况有、、、、、、、、,共种可能;而甲的纪念品不比乙的纪念品价值高的情况有、、、、、,共种可能.故甲的纪念品不比乙的纪念品价值高的概率为.18、(1)证明见解析;(2).【解题分析】(1)连接,可通过证明,得平面;(2)以O为坐标原点建立如图所示的空间直角坐标系,求出平面的法向量和平面的法向量,通过向量的夹角公式可得答案.【小问1详解】如图,连接,在中,由可得.因为,,所以,,因为,,,所以,所以.又因为,平面,,所以平面.【小问2详解】由(1)可知,,,两两垂直,以O为坐标原点建立如图所示的空间直角坐标系,则,,,,.由,有,则,设平面的法向量为,由,,有,取,则,,可得平面的一个法向量为.设平面的法向量为,由,,有,取,则,,可得平面的一个法向量为.由,,,可得平面与平面所成夹角的余弦值为.19、(1)答案见解析(2)证明见解析【解题分析】(1)先求出函数的定义域,然后求导,再根据导数的正负求出函数的单调区间,(2)要证,只要证,由于时,,当时,令,再利用导数求出其最小值大于零即可【小问1详解】的定义域为当时,,在上单调递增;当时,令,解得;令,解得;综上所述:当时,在上单调递增,无减区间;当时,在上单调递减,在上单调递增;【小问2详解】,,即证:,即证:当时,,,当时,令,则在上单调递增在上单调递增综上所述:,即20、(1)(2);或【解题分析】(1)由题意得到数列为公差为的等差数列,结合,,成等比数列,列出方程求得,即可得到数列的通项公式;(2)由,得到时,,当时,,当时,,结合等差数列的求和公式,即可求解.【小问1详解】解:由题意,数列满足,所以数列为公差为的等差数列,又由,,成等比数列,可得,即,解得,所以数列的通项公式.【小问2详解】解:由数列的通项公式,令,即,解得,所以当时,;当时,;当时,,所以当或时,取得最小值,最小值为.21、(1),600(2)【解题分析】用平均数及方差公式计算即可.用平均值得、之间的关系,再由,解不等式可得解.【小问1详解】甲类品牌汽车的排放量的平均值,甲类品牌汽车的排放量的方差.【小问2详解】由题意知乙类品牌汽车的排放量的平均值=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的排放量的方差,因为乙类品牌汽车比甲类品牌汽车的排放量稳定性好,所以,解得.22、(1).(2).【解题分析】分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论