




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东深圳龙文教育高二上数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数满足,则的取值范围()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-12.刘老师在课堂中与学生探究某个圆时,有四位同学分别给出了一个结论.甲:该圆经过点.乙:该圆半径为.丙:该圆的圆心为.丁:该圆经过点,如果只有一位同学的结论是错误的,那么这位同学是()A.甲 B.乙C.丙 D.丁3.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元4.函数的图象的大致形状是()A. B.C. D.5.如图,样本和分别取自两个不同的总体,它们的平均数分别为和,标准差分别为和,则()AB.C.D.6.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.7.在等差数列中,若,则()A.6 B.9C.11 D.248.在长方体中,,,点分别在棱上,,,则()A. B.C. D.9.已知数列满足,且,那么()A. B.C. D.10.点到直线的距离是()A. B.C. D.11.如图甲是第七届国际数学家大会(简称ICME—7)的会徽图案,其主体图案是由图乙的一连串直角三角形演化而成的.已知,,,,为直角顶点,设这些直角三角形的周长从小到大组成的数列为,令,为数列的前项和,则()A.8 B.9C.10 D.1112.从集合{2,3,4,5}中随机抽取一个数m,从集合{1,3,5}中随机抽取一个数n,则向量=(m,n)与向量=(1,-1)垂直的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线:与直线:平行,则的值为___________.14.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_________.15.在中.若成公比为的等比数列,则____________16.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,(1)设,求证:数列是等比数列;(2)求数列的前项和18.(12分)已知函数.(1)若与在处有相同的切线,求实数的取值;(2)若时,方程在上有两个不同的根,求实数的取值范围.19.(12分)设函数(1)求在处的切线方程;(2)求在上的最大值与最小值20.(12分)已知函数.(1)求函数在处的切线方程;(2)设为的导数,若方程的两根为,且,当时,不等式对任意的恒成立,求正实数的最小值.21.(12分)中,内角、、所对的边为、、,.(1)求角的大小;(2)若、、成等差数列,且,求边长的值.22.(10分)如图,已知椭圆的焦点是圆与x轴的交点,椭圆C的长半轴长等于圆O的直径(1)求椭圆C的方程;(2)F为椭圆C的右焦点,A为椭圆C的右顶点,点B在线段FA上,直线BD,BE与椭圆C的一个交点分别是D,E,直线BD与直线BE的倾斜角互补,直线BD与圆O相切,设直线BD的斜率为.当时,求k
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】把看成动点与所确定的直线的斜率,动点在所给曲线上.【题目详解】就是点,所确定的直线的斜率,而在上,因为,.故选:C2、D【解题分析】分别假设甲、乙、丙、丁是错误的,看能否推出矛盾,进而推导出答案.【题目详解】假设甲的结论错误,根据丙和丁的结论,该圆的半径为6,与乙的结论矛盾;假设乙的结论错误,圆心到点的距离与圆心到点的距离不相等,不成立;假设丙的结论错误﹐点到点的距离大于,不成立;假设丁的结论错误,圆心到点的距离等于,成立.故选:D3、D【解题分析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【题目详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D4、B【解题分析】对A,根据当时,的值即可判断;对B,根据函数在上的单调性即可判断;对C,根据函数的奇偶性即可判断;对D,根据函数在上的单调性即可判断.【题目详解】解:对A,当时,,故A错误;对B,的定义域为,且,故为奇函数;,当时,当时,,即,又,,故存在,故在单调递增,单调递减,单调递增,故B正确;对C,为奇函数,故C错误;对D,函数在上不单调,故D错误.故选:B.5、B【解题分析】直接根据图表得到答案.【题目详解】根据图表:样本数据均小于等于10,样本数据均大于等于10,故;样本数据波动大于样本数据,故.故选:B.6、A【解题分析】根据三视图即可还原几何体.【题目详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【题目点拨】本题主要考查了三视图,属于中档题.7、B【解题分析】根据等差数列的通项公式的基本量运算求解【题目详解】设的公差为d,因为,所以,又,所以故选:B8、D【解题分析】依题意可得,从而得到,即可得到,从而得解;【题目详解】解:由长方体的性质可得,又,所以,因为,所以,所以,因为,所以;故选:D9、D【解题分析】由递推公式得到,,,再结合已知即可求解.【题目详解】解:由,得,,又,那么故选:D10、B【解题分析】直接使用点到直线距离公式代入即可.【题目详解】由点到直线距离公式得故选:B11、B【解题分析】由题意可得的边长,进而可得周长及,进而可得,可得解.【题目详解】由,可得,,,,所以,,所以前项和,所以,故选:B.12、A【解题分析】根据分步计数乘法原理求得所有的)共有12个,满足两个向量垂直的共有2个,利用古典概型公式可得结果.【题目详解】集合{2,3,4,5}中随机抽取一个数,有4种方法;从集合{1,3,5}中随机抽取一个数,有3种方法,所以,所有的共有个,由向量与向量垂直,可得,即,故满足向量与向量垂直的共有2个:,所以向量与向量垂直的概率为,故选A.【题目点拨】本题主要考查分步计数乘法原理的应用、向量垂直的性质以及古典概型概率公式的应用,属于中档题.在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解题分析】根据两直线平行的条件列式求解即可.【题目详解】由题意可知,的斜率,的斜率,∵,∴解得.故当时,直线:与直线:平行.故答案为:-1.14、【解题分析】设M,N的中点坐标为P,,则;由于,化简可得,根据椭圆的定义==6,所以12.考点:1.椭圆的定义;2.两点距离公式.15、【解题分析】由条件可得,即,由余弦定理可得答案.【题目详解】由成公比为的等比数列,即由正弦定理可知所以故答案为:16、【解题分析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【题目详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】(1)将变形为,得到为等比数列,(2)由(1)得到的通项公式,用错位相减法求得【题目详解】(1)由,,可得,因为则,,可得是首项为,公比为的等比数列,(2)由(1),由,可得,,,上面两式相减可得:,则【题目点拨】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和(2)错位相减:用于等差数列与等比数列的积数列的求和(3)分组求和:用于若干个等差或等比数列和或差数列的求和(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.18、(1)(2)【解题分析】(1)根据导数的几何意义求得函数在处的切线方程,再由有相同的切线这一条件即可求解;(2)先分离,再研究函数的单调性,最后运用数形结合的思想求解即可.【小问1详解】设公切线与的图像切于点,f'(x)=1+lnx⇒f由题意得:;【小问2详解】当时,,①,①式可化为为,令令,,在上单调递增,在上单调递减.,当时,由题意知:19、(1)(2),【解题分析】(1)对函数求导,然后求出,,运用点斜式即可求出切线方程;(2)利用导数研究出函数在区间的单调性,即可求出函数在区间上的最大值与最小值【小问1详解】,,,所以在点处的切线方程为,即.【小问2详解】,因为,所以与同号,令则,由,得,此时为减函数,由,得,此时为增函数,则,故,在单调递增,所以,20、(1)(2)1【解题分析】(1)先求导数,根据导数的几何意义可求得切线方程;(2)将已知方程结合其两根,进行变式,求得,利用该式再将不等式变形,然后将不等式的恒成立问题变为函数的最值问题求解.【小问1详解】由题意可得,所以切点为,则切线方程为:.【小问2详解】由题意有:,则,因为分别是方程的两个根,即.两式相减,则,则不等式,可变为,两边同时除以得,,令,则在上恒成立.整理可得,在上恒成立,令,则,①当,即时,在上恒成立,则在上单调递增,又,则在上恒成立;②当,即时,当时,,则在上单调递减,则,不符合题意.综上:,所以的最小值为1.21、(1);(2).【解题分析】(1)利用正弦定理可求得的值,结合角的取值范围可求得角的值;(2)由三角形的面积公式可求得的值,由已知可得,利用余弦定理可得出关于的等式,即可求得边的长.【小问1详解】解:因为,由正弦定理可得,,则,可得,,,因此,.【小问2详解】解:,可得,因为、、成等差数列,则,由余弦定理可得,解得.22、(1);(2)-1【解题分析】(1)由题设可得,求出参数b,即可写出椭圆C的方程;(2)延长线段DB交椭圆C于点,根据对称性设B,为,,联立椭圆方程,应用韦达定理并结合已知条件可得,直线与圆相切可得,进而求参数t,即可求直线BD的斜率.【小问1详解】因为圆与x轴的交点分别为,,所以椭
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑施工合同转让协议
- 砂砾购销合同
- 房地产项目顾问服务合同
- 售货机销售合同协议
- 医药研发服务合同
- 第12课《自定主题活动三:制作方便面盒滑翔机》(教学设计)-2023-2024学年四年级下册综合实践活动浙教版
- Unit 6 教学设计2024-2025学年人教版(2024)七年级英语上册
- 六安职业技术学院《兽医流行病学专题》2023-2024学年第二学期期末试卷
- 石家庄城市经济职业学院《化学合成实验》2023-2024学年第二学期期末试卷
- 中国地质大学(北京)《水生态保护与修复》2023-2024学年第二学期期末试卷
- 内蒙古鄂尔多斯杭锦经济开发区地质灾害危险性评估报告
- 安徽教育出版社小学三年级下册综合实践活动教案(全册)
- DB23T 2656-2020桦树液采集技术规程
- 2023年苏州职业大学单招职业适应性测试题库及答案解析
- 中国故事英文版哪吒英文二篇
- 2023年中智集团及下属单位招聘笔试题库及答案解析
- GB/T 8888-2003重有色金属加工产品的包装、标志、运输和贮存
- GB/T 32685-2016工业用精对苯二甲酸(PTA)
- GB/T 21872-2008铸造自硬呋喃树脂用磺酸固化剂
- 酒店业主代表岗位职责标准(8篇)
- 上海市中小学生语文学业质量绿色指标测试
评论
0/150
提交评论