




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
偏摩尔性质逸度和活度第一页,共一百一十八页,编辑于2023年,星期日第3章学习了纯物质及均相定组成系统的热力学性质。热力学更多的实际应用是涉及多组元混合物的均相敞开系统。由于混合物的组成常因为质量传递或化学反应而发生变化,所以在用热力学来描述混合物时必须考虑组成对其性质的影响。第二页,共一百一十八页,编辑于2023年,星期日4.1变组成系统的热力学关系
第三页,共一百一十八页,编辑于2023年,星期日对于单相纯物质组成体系,热力学性质间的关系式:
对1mol
H=U+pV
A=U-TSG=H-TS=U+pV-TSnmol
nH=nU+p(nV)nA=nU-T(nS)nG=nH-T(nS)=nU+p(nV)-T(nS)第四页,共一百一十八页,编辑于2023年,星期日对应于热力学微分方程(热力学基本方程)对1moldU=TdS-pdVdH=TdS+VdpdA=-SdT-pdVdG=-SdT+Vdp
对nmoldUt=d(nU)=Td(nS)-pd(nV)dHt=d(nH)=Td(nS)+(nV)dpdAt=d(nA)=-(nS)dT-pd(nV)dGt=d(nG)=-(nS)dT+(nV)dp
第五页,共一百一十八页,编辑于2023年,星期日微分方程对1mol对于nmolMaxwell关系式对此也适用第六页,共一百一十八页,编辑于2023年,星期日对于均相敞开系统。系统与环境之间有物质的交换,物质可以加入系统,也可以从系统取出。Ut=nU=f(nS,nV,n1,n2,…,ni,…)U=f(S,V)表示由于组成变化带来的系统内能的变化第七页,共一百一十八页,编辑于2023年,星期日同理,根据焓、Helmholtz自由能和Gibbs自由能的热力学基本方程,便可以得到均相敞开系统的其它热力学基本关系式:第八页,共一百一十八页,编辑于2023年,星期日
四个总性质对于组元摩尔数的偏导数实际上都相等,并定义为化学位(化学势),记为:虽然,4个能量函数均可以定义化学位,但注意其不变量(即下标)是不同的。第九页,共一百一十八页,编辑于2023年,星期日均相敞开系统热力学基本关系式
将化学位的定义代入均相敞开系统热力学基本关系式,可以得到:
第十页,共一百一十八页,编辑于2023年,星期日注意:以上关系式的使用情况
1适用于敞开体系,封闭体系;2当dni=0时,简化成适用于定组成、定质量体系;3Maxwell关系式用于可变组成体系时,要考虑组成不变的因素,如:(对单相,定组成)(对单相,可变组成)
第十一页,共一百一十八页,编辑于2023年,星期日有关化学位的重要关系式在对ni求导第十二页,共一百一十八页,编辑于2023年,星期日4.2偏摩尔性质第十三页,共一百一十八页,编辑于2023年,星期日4.2.1偏摩尔性质概念的引入、定义4.2.2偏摩尔性质之间的热力学关系4.2.3偏摩尔性质的计算4.2.4Gibbs-Duhem方程第十四页,共一百一十八页,编辑于2023年,星期日4.2.1偏摩尔性质概念的引入对于理想混合物,例如体积符合Amagat分体积定律但对于真实混合物而言,不能用加和的方法来处理,因为事实上真实混合物的焓、Gibbs自由能、体积等广度性质并不等于纯物质的性质加和。第十五页,共一百一十八页,编辑于2023年,星期日乙醇含量(质量%)V1/cm3V2/cm3Vcalcu/cm3Vexp/cm3△V/cm31012.6790.36103.03101.841.192025.3480.32105.66103.242.423038.0170.28108.29104.843.454050.6860.24110.92106.933.995063.3550.20113.55109.434.126076.0240.16116.18112.223.967088.6936.12118.81115.253.5680101.3620.08121.44118.562.8890114.0310.04124.07122.251.82第十六页,共一百一十八页,编辑于2023年,星期日结论真实混合物的广度性质不能用纯物质的摩尔性质加和来简单地表示,并且其广度性质和T,p,组成均有关系。即:纯物质的摩尔性质不能代表该物质对于真实混合物该性质的贡献。需要引入一个新的性质,该性质能反映该物质对于混合物某性质的贡献,以此性质来代替摩尔性质,该性质记为偏摩尔性质(PartialMolarProperty),记为:第十七页,共一百一十八页,编辑于2023年,星期日定义:偏摩尔性质的定义若某相内含有N种物质,则系统的总容量性质nM是该相温度、压力和各组元的物质的量的函数
第十八页,共一百一十八页,编辑于2023年,星期日注意:偏摩尔量的物理意义是:在T,p,及其他组元量nj不变的情况下,向无限多的混合物中加入1mol组分i所引起的混合物广度热力学性质的变化。其三要素为:恒温恒压、广度性质、随组分i摩尔数的变化率。只有广度性质才有偏摩尔量,但偏摩尔量是一个强度性质;对于纯物质:任何偏摩尔性质都是T,p和组成的函数,即:第十九页,共一百一十八页,编辑于2023年,星期日偏摩尔性质物理意义通过实验来理解,如:在一个无限大的颈部有刻度的容量瓶中,盛入大量的乙醇水溶液,在乙醇水溶液的温度、压力、浓度都保持不变的情况下,加入1摩尔乙醇,充分混合后,量取瓶颈上的溶液体积的变化,这个变化值即为乙醇在这个温度、压力和浓度下的偏摩尔体积。定义的是混合物的性质在各组分间如何分配第二十页,共一百一十八页,编辑于2023年,星期日化学位的理解根据偏摩尔量的定义:虽然,化学位可以用四个能量函数定义,但它仅是Gibbs自由能的偏摩尔量第二十一页,共一百一十八页,编辑于2023年,星期日化学位之差决定化学反应和物质相之间的传递方向,化学位是判断化学反应平衡和相平衡的重要依据。化学位是不可以测量的,需要用可以测量的量表示和计算;此外,第二十二页,共一百一十八页,编辑于2023年,星期日4.2.2偏摩尔性质间的热力学关系Maxwell关系式同样也适用于偏摩尔性质
公式平移:针对纯物质摩尔量间的关系式,对于混合物偏摩尔量间的关系依然成立。第二十三页,共一百一十八页,编辑于2023年,星期日关于化学位的几个重要公式从偏摩尔量的间的关系出发得到:第二十四页,共一百一十八页,编辑于2023年,星期日4.2.3偏摩尔量的相关计算已知:第二十五页,共一百一十八页,编辑于2023年,星期日2)已知使用偏摩尔量定义第二十六页,共一百一十八页,编辑于2023年,星期日(3)已知多元:二元截距:第二十七页,共一百一十八页,编辑于2023年,星期日M10x2x21-x2M二元截距法公式图解第二十八页,共一百一十八页,编辑于2023年,星期日符号总结纯物质摩尔性质Mi
如:Vi
Hi
Si
Gi纯物质性质(nM)如:(nV),(nH),(nS),(nG)混合物整体的摩尔性质M
如:V,H,S,G混合物性质(nM)如:(nV),(nH),(nS),(nG)偏摩尔性质如:第二十九页,共一百一十八页,编辑于2023年,星期日刚性容器的体积为1.0m3,内存有0.05m3的饱和水和0.95m3的饱和水蒸气,压力是0.1013MPa。问至少需要加入多少热量才能使容器中的水完全汽化?此时容器的压力多大?(1.0266*108J,89.5*105Pa)提示:(1)加入的热量应等于什么性质变化?(2)始态和终态应该查什么表?尤其注意终态应该是什么状态?温度和压力分别是多少?第四次作业第三十页,共一百一十八页,编辑于2023年,星期日第四次作业P583-11P954-8第三十一页,共一百一十八页,编辑于2023年,星期日4.2.4Gibbs-Duhem方程1.
Gibbs-DuhumEq的一般形式对溶液的热力学性质有下面两个表达形式:
对这两个式子,分别求全微分:
第三十二页,共一百一十八页,编辑于2023年,星期日比较两式得或第三十三页,共一百一十八页,编辑于2023年,星期日2.Gibbs-DuhumEq的常用形式恒T、恒pGibbs-DuhumEq可以简化,简化式为:
(恒T,p)当M=G时,得:(恒T,p)第三十四页,共一百一十八页,编辑于2023年,星期日3.
Gibbs-DuhumEq的作用Gibbs-DuhumEq是理论方程;混合物中不同组元间的同一个偏摩尔量间不是独立的,它们之间要受Gibbs-Duhem方程的限制;利用该方程可以从一个组元的偏摩尔量计算另一个组元的偏摩尔量;Gibbs-DuhumEq可以证实热力学关系是否成立。Gibbs-DuhumEq可以验证汽液平衡数据是否正确;第三十五页,共一百一十八页,编辑于2023年,星期日例题在25℃和0.1MPa时,测得甲醇(1)和水(2)的偏摩尔体积近似为:此外,纯甲醇的摩尔体积为试求:在该条件下的甲醇的偏摩尔体积和混合物的摩尔体积。第三十六页,共一百一十八页,编辑于2023年,星期日4.3逸度和逸度系数(FugacityandFugacityCoefficient)第三十七页,共一百一十八页,编辑于2023年,星期日逸度和逸度系数的定义及物理意义纯气体逸度的计算纯液体逸度的计算混合物中组元逸度的计算第三十八页,共一百一十八页,编辑于2023年,星期日定义(T恒定)1mol纯物质i:Idealgas(T恒定)逸度和逸度系数的定义及物理意义这是一个仅适用于理想气体的方程式
对于真实流体,体积Vi需要用真实流体的状态方程来描述,这样,表达式势必非常复杂。提问:想保持这样简单的表达式,怎么办?第三十九页,共一百一十八页,编辑于2023年,星期日(T恒定)纯物质i
的逸度定义:单位与压力相同纯物质i
的逸度系数定义:需要计算用逸度f代替压力p,形式不变(T恒定)纯物质的有效压力或校正压力第四十页,共一百一十八页,编辑于2023年,星期日逸度和逸度系数的物理意义(1)对于纯物质,理想气体逸度fi=p,真实气体,是“校正压力”或“有效压力”逸度系数校正真实气体与理想气体的偏差。(2)物质在任何状态下都有逃逸该状态的趋势,逸度表示分子的逃逸趋势,相间的传递推动力。如:在一定温度T下,液相的水分子有逃逸到汽相的趋势,汽相的水分子有逃逸到液相的趋势,当两者相等时,汽液两相达到平衡。第四十一页,共一百一十八页,编辑于2023年,星期日(T恒定)逸度和逸度系数的定义总结(T恒定)纯物质i混合物中的i组分(T恒定)混合物整体第四十二页,共一百一十八页,编辑于2023年,星期日
与是(nlnf)的偏摩尔量是(nlnΦ)的偏摩尔量Rem:的关系——(二元截距)第四十三页,共一百一十八页,编辑于2023年,星期日温度和压力对于逸度、逸度系数的影响经过推导,可以得到:纯物质混合物中组元第四十四页,共一百一十八页,编辑于2023年,星期日纯气体逸度的计算对于气体来说,一般先求逸度系数,再计算逸度第四十五页,共一百一十八页,编辑于2023年,星期日T
恒定等式两边减去恒等式
想计算逸度系数,只需对上式积分积分上限取真实压力p积分下限取为p趋于0,即理想气体第四十六页,共一百一十八页,编辑于2023年,星期日积分得到了纯物质逸度系数的计算式
逸度系数完全可以用pVT关系表示,即逸度系数的计算依赖于pVT关系,只要有相应的pVT关系,就可以用来计算真实流体的逸度系数了,进而可以计算逸度。第四十七页,共一百一十八页,编辑于2023年,星期日气体pVTEOS对比态Lyderson压缩因子图普遍化RK普遍化舍项维里普遍化图普遍化EOSRK方程舍项维里方程Pitzer图第四十八页,共一百一十八页,编辑于2023年,星期日舍项virial方程求fi和Φi(4-84)(T恒定)第四十九页,共一百一十八页,编辑于2023年,星期日RK方程求fi和Φi或(T恒定)推导过程相对复杂,需要变换第五十页,共一百一十八页,编辑于2023年,星期日普遍化virial方程求fi和Φi(4-63)pitzer三参数压缩因子图求fi和Φi(4-64)(T恒定)注:两种对比态法的使用范围逸度系数图是怎么汇出的?第五十一页,共一百一十八页,编辑于2023年,星期日利用剩余性质计算逸度系数由逸度定义:从标准态积分得:取逸度单位为atm剩余熵?剩余焓?思考:最后怎么表示为剩余焓和剩余熵的函数?第五十二页,共一百一十八页,编辑于2023年,星期日纯液体i的逸度fil
和逸度系数Φli
的计算适用于气体和液体,但从压力0到p的液体不连续,需要分段积分第一段,气体,从压力0到饱和压力ps,结果为压力ps下的气体逸度系数第二段,从饱和气体到饱和液体,压力为饱和压力ps第三段,液体,压力从饱和压力ps到p第五十三页,共一百一十八页,编辑于2023年,星期日三段叠加的结果为:认为液体体积不变校正饱和蒸汽对理想气体的偏离Poynting校正因子,校正压力影响,在高压下起作用。第五十四页,共一百一十八页,编辑于2023年,星期日混合物一般的气体混合物理想的气体混合物理想气体的混合物混合物中i
组分的和计算气体混合物液体混合物理想的液体混合物一般的液体混合物第五十五页,共一百一十八页,编辑于2023年,星期日混合物中组元逸度的计算混合物与纯物质逸度系数计算式的形式完全一样,只是再增加组成恒定的限定条件。
纯气体:气体混合物的i
组分:(T恒定)(T,yi
恒定)气体混合物pVT=EOSRK方程舍项维里方程+mixingrulesRequirements:第五十六页,共一百一十八页,编辑于2023年,星期日混合物舍项virial方程virial方程计算气体混合物中i
组分的逸度
和逸度系数
(T,yi
恒定)结果:第五十七页,共一百一十八页,编辑于2023年,星期日
立方型方程计算气体混合物中i
组分的逸度
和逸度系数
(T,yi
恒定)RK结果:(4-70)SRK结果:(4-71)PR结果:(4-72)第五十八页,共一百一十八页,编辑于2023年,星期日横跨气液两相的
液体混合物中i
组分的逸度
和逸度系数
的计算(T,yi
恒定)液体lllpVTSRKPRBWRRequirements:idealgasSRKPRNotes:SRK和PR计算式中的V
是液相的摩尔体积lllllllllZ是以Vl计算的压缩因子第五十九页,共一百一十八页,编辑于2023年,星期日4.4混合过程性质变化第六十页,共一百一十八页,编辑于2023年,星期日定义:定义混合物的种类理想混合物:分子大小相近、形状相似、性质接近的物质构成的混合物。如:异构体一般的混合物第六十一页,共一百一十八页,编辑于2023年,星期日各个混合过程性质变化之间的关系类似于一般热力学关系
第六十二页,共一百一十八页,编辑于2023年,星期日混合焓变和焓浓图第六十三页,共一百一十八页,编辑于2023年,星期日第五次作业P954-9P954-10P954-11P954-12P954-15第六十四页,共一百一十八页,编辑于2023年,星期日4.5理想溶液第六十五页,共一百一十八页,编辑于2023年,星期日4.5.1概念的提出为了更加方便地流体混合物的逸度及其他热力学性质,提出一种更加简单且实用的方法;对每个系统,选择一个与研究状态同温、同压、同组成的理想溶液(广义)作参考态;在参考态下进行修正,求得真实混合物的热力学性质。第六十六页,共一百一十八页,编辑于2023年,星期日定义在恒温、恒压下,每一组元的逸度正比于它在溶液中的浓度,通常为摩尔分数。即在某一恒定的温度和压力下,对于理想混合物中的任一组元i:为与混合物同温同压下组元i的标准态逸度第六十七页,共一百一十八页,编辑于2023年,星期日理想气体:分子之间无相互作用力,分子体积为0理想混合物:分子之间有相互作用力,分子有体积;但各组分由于结构相似,性质相近,分子间作用力相等,分子体积相同。如:水-重水同位素化合物
d-樟脑-l-樟脑光学异构体邻、间、对二甲苯结构异构体己烷-庚烷紧邻同系物理想混合物和理想气体一样,是一种极限。第六十八页,共一百一十八页,编辑于2023年,星期日4.5.2理想溶液的模型与标准态第六十九页,共一百一十八页,编辑于2023年,星期日
理想的气体/液体混合物中i组分的
和的计算理想混合物(T恒定)(T,yiorxi
恒定)(T,p)理想的气体混合物理想的液体混合物纯物质:混合物的i
组分:相减,得:第七十页,共一百一十八页,编辑于2023年,星期日理想混合物理想气体更理想化第七十一页,共一百一十八页,编辑于2023年,星期日Lewis-Randall逸度规则第七十二页,共一百一十八页,编辑于2023年,星期日实际上,Lewis规则假设:在恒定的T和p下,组元i的逸度系数与混合物的组成无关,且与混合物中其他组元的本性无关。当然,这些是极端的假定。讨论分子间力,我们认识到组元i对理想气体行为的偏离(用逸度系数度量)不但取决于T和p,而且取决于组分i与其他组元j,k等的相对数量;此外,组元i的逸度系数必定依赖于能与组元i相互作用的其它组元的化学本性。根据Lewis规则,组元i的逸度系数仅是温度和压力的函数,而与组成无关。第七十三页,共一百一十八页,编辑于2023年,星期日因为实际计算比较简单,Lewis规则仍然是常用的。我们可以预期,当分子i在混合物中所受的分子间力类似于在纯态中所受的力时,组元i的偏摩尔体积就接近于相同温度和压力下纯i的摩尔体积,用较为口语化的方式说,当分子i“在客人中”感到“在家里”一样,那么在混合物中它具有的性质就接近于它在纯态时的性质,所以对于组元i的Lewis规则的使用来说有一些规律。第七十四页,共一百一十八页,编辑于2023年,星期日在低压下总是一个很好的近似式,此时气相十分接近于理想;如果i以很大的过量存在,在任何压力下总是一个很好的近似式。在组元i的组成趋于1时,Lewis规则式成为准确的;如果所有组元的物理性质近似相同(例如N2~CO,苯~甲苯),在广阔的组成和压力范围内通常是一个尚好的近似式;如果其它组元的分子性质与i的性质有明显的差别,且i并非以过量存在,在中压和高压下几乎是一个差的近似式。若组元i的组成很小且i的分子性质与混合物中占优势的组分有很大的差别时,则Lewis规则引入的误差通常是极大的。总之,Lewis逸度规则简便,它是吸引人的,但没有普遍的适用性,不过当应用于某些极限情况时,它常常是一个好的近似式。第七十五页,共一百一十八页,编辑于2023年,星期日CO2逸度系数1.81.6压力/bar1.41.00.6400100RK方程k12=0Lewis-Randall规则171℃时CO2在85mol%正丁烷的混合物中的逸度系数RK方程k12=0.18第七十六页,共一百一十八页,编辑于2023年,星期日理想混合物的混合性质变化
(T恒定)
由纯物质状态积分至理想混合物状态,便可得到理想混合物的偏摩尔Gibbs自由能与纯物质性质之间的关系理想混合物的定义式第七十七页,共一百一十八页,编辑于2023年,星期日理想混合物特点:(1)分子结构相似,分子之间作用力相等,分子体积相等(2)混合时没有热效应(3)混合时没有体积效应(4)符合Lewis-randall规则第七十八页,共一百一十八页,编辑于2023年,星期日思考两个同处于T,p下的纯理想气体1、2,等温、等压混合成组成为y1和y2的理想气体混合物。求混合过程的V,U,H,S,G,A,Cp,CV的变化。第七十九页,共一百一十八页,编辑于2023年,星期日几个常用的规则第八十页,共一百一十八页,编辑于2023年,星期日4.Henry定律
任意压力下适用溶液中溶质组分i的逸度正比于摩尔分数,比例系数为该组分在该温度下的Henry常数当压力较低时,可以还原为Henry定律第八十一页,共一百一十八页,编辑于2023年,星期日5通式3式和4式的通式写为:为与混合物同温同压下组元i的标准态逸度6标准态逸度有两种同温同压下纯组元i的逸度作为标准态,即实际态与标准态相同,如25℃,1atm下,1M盐酸中的水,确定在该温度、压力下,存在纯水同温同压下纯组元i的假想态逸度作为标准态,实际态与标准态不相同,如25℃,1atm下,1M盐酸中的HCl,确定在该温度、压力下,不存在HCl该标准态常用于溶液中溶解度很小的溶质,如雪碧中的CO2,血中的氧为与混合物同温同压下组元i的标准态逸度第八十二页,共一百一十八页,编辑于2023年,星期日xi理想溶液:在全浓度范围内,每种组分均符合LR规则理想稀溶液:溶剂遵守LR规则;溶质遵守Henry定律第八十三页,共一百一十八页,编辑于2023年,星期日第八十四页,共一百一十八页,编辑于2023年,星期日4.6活度和活度系数第八十五页,共一百一十八页,编辑于2023年,星期日活度定义活度标准态超额性质活度系数方程第八十六页,共一百一十八页,编辑于2023年,星期日液体混合液中组元活度真实溶液与理想溶液(理想混合物)或多或少存在着偏差。如果我们用“活度系数”来表示这种偏差程度,便可通过对理想溶液进行校正的方式来解决真实溶液的计算。
热力学处理方法:真实气体-用逸度代替压力,逸度称为“有效压力”或“校正压力”,逸度系数为逸度与压力的比值;真实溶液-用活度代替浓度,活度称为“有效浓度”或“校正浓度”,活度系数为活度与浓度的比值。第八十七页,共一百一十八页,编辑于2023年,星期日液体混合液中组元活度液体混合液中组元活度定义从标准态积分到实际状态真实与理想溶液的相应公式相比可得从标准态积分到理想混合物状态在任何组成下,活度系数都依赖于标准态的选择,如果逸度标准态没有指定,活度和活度系数的值就没有意义。第八十八页,共一百一十八页,编辑于2023年,星期日液体混合液中组元活度则:定义活度系数第八十九页,共一百一十八页,编辑于2023年,星期日即活度系数等于真实溶液与同温同压、同组成的理想溶液的组元逸度之比。活度系数是溶液非理想性的度量。由此可以对溶液进行归类。
对于纯组元,其活度和活度系数都等于1;理想溶液中组元的活度等于其浓度,活度系数等于1;对于真实溶液,其组元活度系数可能大于1(称为正偏差体系),也可能小于1(称为负偏差体系)第九十页,共一百一十八页,编辑于2023年,星期日活度系数标准态的选择活度与逸度的标准态有关,逸度选择不同的标准态将有不同的活度和活度系数
标准态逸度有两种第九十一页,共一百一十八页,编辑于2023年,星期日xi无限稀的溶液中(即理想稀溶液中溶质和溶剂的活度系数均等于1第九十二页,共一百一十八页,编辑于2023年,星期日Note:Gibbs-Duhem方程提供了Lewis-Randall规则和Henry定律之间的关系。即在一定温度和压力下,若二元溶液的组元2适合于Henry定律,则组元1就必然适合于Lewis-Randall规则,反之亦然。对称性活度系数和非对称性活度系数之间符合关系式:当逸度选择不同标准态时,活度和活度系数将发生变化,但逸度值与标准态无关。第九十三页,共一百一十八页,编辑于2023年,星期日4.6.4超额性质第九十四页,共一百一十八页,编辑于2023年,星期日超额性质(ExcessProperties)定义:超额性质是指真实混合物与相同温度、压力和组成的理想混合物的摩尔性质之差。
注意:超额性质与剩余性质不同第九十五页,共一百一十八页,编辑于2023年,星期日超额Gibbs自由能GE是的偏摩尔性质
只要知道了超额Gibbs自由能和组成的函数关系,便可确定各组元的活度系数,这是大部分活度系数方程的根源怎么推导?第九十六页,共一百一十八页,编辑于2023年,星期日理论模型
Flory-huggins方程(无热溶液模型)Scatchard-Hilde-Brand方程(正规溶液模型)半经验半理论模型
Whol方程(Margules方程,vanlaar方程)
基于局部组成概念的模型(Wilson方程,NRTL方程,
UNIQUAC方程)经验模型第九十七页,共一百一十八页,编辑于2023年,星期日4.7活度系数与组成关联式第九十八页,共一百一十八页,编辑于2023年,星期日正规溶液模型模型定义
1、混合体积为零
2、混合熵等于理想混合熵斯格恰-希尔布兰德方程适用范围:
分子大小和形状相似的组分组成的正偏差物系体积分数溶解度参数第九十九页,共一百一十八页,编辑于2023年,星期日无热混合物模型模型定义
混合热基本为零的体系,其非理想性主要取决于熵贡献
Flory-Huggiins方程适用范围:
组分之间的相互作用力相近的体系,如高聚物与其单体组成的溶液体积分数第一百页,共一百一十八页,编辑于2023年,星期日随机溶液模型模型定义
溶液中分子间的碰撞是随机的
Whol方程
通式:对二元物系第一百零一页,共一百一十八页,编辑于2023年,星期日Whol方程的简化当
时,得Margules方程当时,得vanlaar方程第一百零二页,共一百一十八页,编辑于2023年,星期日Whol型方程的适应范围(1)适用正规溶液模型体系(2)MargulesEq适用于分子结构相似的体
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 债权货车转让合同范例
- 乡镇工厂劳动合同范例
- 公司专职律师合同范例
- 制版合同范本
- 加工牛肉出售合同范例
- 教育教学论文心得-做温暖而明亮的灯塔
- 累积生态风险对青少年学习投入的影响机制及干预研究
- 教育教学论文-三体五步教学法
- 钌、钴基催化剂的制备及其电催化析氢和硫离子氧化性能的研究
- 公司合作简易合同范例
- C小学一起诺如病毒胃肠炎疫情的调查与处置课件
- 2025年镓矿采选项目投资可行性研究分析报告
- 欧泰科-吊挂软件使用教程
- 公安局网安大队工作总结
- 2025年装备制造创新中心北京石油机械有限公司招聘笔试参考题库附带答案详解
- 教科版六年级下册科学全册教学设计教案
- 2025年哈尔滨铁道职业技术学院高职单招高职单招英语2016-2024年参考题库含答案解析
- 病理学与病理生理学考试题
- 《政协提案学习讲座》课件
- 年链家房屋租赁合同范本
- GB/T 41869.4-2024光学和光子学微透镜阵列第4部分:几何特性测试方法
评论
0/150
提交评论