切线的判定与性质 省赛获奖_第1页
切线的判定与性质 省赛获奖_第2页
切线的判定与性质 省赛获奖_第3页
切线的判定与性质 省赛获奖_第4页
切线的判定与性质 省赛获奖_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

24.2直线和圆的位置关系第2课时切线的判定与性质导入新课讲授新课当堂练习课堂小结1.定义:直线和圆只有一个公共点时,我们说这条直线是圆的切线;2.数量关系:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;llrd要点归纳经过半径的外端并且垂直于这条半径的直线是圆的切线.OA为⊙O的半径BC

OA于ABC为⊙O的切线OABC切线的判定定理应用格式O要点归纳当堂练习

1.判断下列命题是否正确.⑴经过半径外端的直线是圆的切线.()⑵垂直于半径的直线是圆的切线.()

⑶过直径的外端并且垂直于这条直径的直线是圆的切线.()⑷和圆只有一个公共点的直线是圆的切线.()⑸过直径一端点且垂直于直径的直线是圆的切线.()

××√√√如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB求证:直线AB是⊙O的切线.CBAO如图,OA=OB=5,AB=8,⊙O的直径为6.求证:直线AB是⊙O的切线.CBAO作垂直连接方法归纳证切线时辅助线的添加方法(1)有交点,连半径,证垂直;(2)无交点,作垂直,证半径.证明:连接OP.∵AB=AC,∴∠B=∠C.

∵OB=OP,∴∠B=∠OPB,∴∠OBP=∠C.

∴OP∥AC.

∵PE⊥AC,∴PE⊥OP.

∴PE为⊙O的切线.2.如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P,PE⊥AC于E.

求证:PE是⊙O的切线.OABCEP思考:如图,如果直线l是⊙O

的切线,点A为切点,那么OA与l垂直吗?AlO∵直线l是⊙O

的切线,A是切点,∴直线l⊥OA.切线的性质定理二切线性质

圆的切线垂直于经过切点的半径.应用格式1.如图:在⊙O中,OA、OB为半径,直线MN与⊙O相切于点B,若∠ABN=30°,则∠AOB=

.2.如图AB为⊙O的直径,D为AB延长线上一点,DC与⊙O相切于点C,∠DAC=30°,若⊙O的半径长1cm,则CD=

cm.60°练一练

利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.方法总结3.如图,⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?OPBA解:连接OB,则∠OBP=90°.设⊙O的半径为r,则OA=OB=r,OP=OA+PA=2+r.在Rt△OBP中,OB2+PB2=PO2,即r2+42=(2+r)2.解得r=3,即⊙O的半径为3.5.如图,在☉O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为(

)A.40°B.35°C.30°D.45°4.如图所示,A是☉O上一点,且AO=5,PO=13,AP=12,则PA与☉O的位置关系是

.APO第2题PO第3题DABC相切C切线的判定方法定义法数量关系法判定定理1个公共点,则相切d=r,则相切经过圆的半径的外端且垂直于这条半径的直线是圆的切线.切线的性质证切线时常用辅助线添加方法:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论