福建省泉州市五星中学高二数学理测试题含解析_第1页
福建省泉州市五星中学高二数学理测试题含解析_第2页
福建省泉州市五星中学高二数学理测试题含解析_第3页
福建省泉州市五星中学高二数学理测试题含解析_第4页
福建省泉州市五星中学高二数学理测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州市五星中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设双曲线的左,右焦点分别为,过的直线交双曲线左支于两点,则的最小值为 ()A. B. C. D.16参考答案:B略2.已知数列{an}中,a1=1,an+1=an+n,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是(

)A.n≤8? B.n≤9? C.n≤10? D.n≤11?参考答案:B【考点】循环结构.【专题】阅读型.【分析】n=1,满足条件,执行循环体,S=2,依此类推,当n=10,不满足条件,退出循环体,从而得到循环满足的条件.【解答】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n≤9,故选B.【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.3.对于函数,部分与的对应关系如下表:123456789745813526数列满足,且对任意,点都在函数的图象上,则的值为(

)A12

B14

C16

D18参考答案:C4.已知集合A={x|log2x<1},B={x|x2+x﹣2<0},则A∪B()A.(﹣∞,2) B.(0,1) C.(﹣2,2) D.(﹣∞,1)参考答案:C【考点】1D:并集及其运算.【分析】分别求解对数不等式及一元二次不等式化简A,B,再由并集运算得答案.【解答】解:∵A={x|log2x<1}={x|0<x<2},B={x|x2+x﹣2<0}={x|﹣2<x<1},∴A∪B={x|0<x<2}∪{x|﹣2<x<1}=(﹣2,2).故选:C.5.已知数列为等差数列,且,,则公差(

)A.-2B.-

C.

D.2参考答案:B6.若函数在区间内可导,且则

的值为(

)A

B

C

D

参考答案:B

7.一个空间几何体的三视图如上图(右)所示,则该几何体的体积为()A.πcm3

B.3πcm3

C.πcm3

D.πcm3参考答案:D由三视图可知,此几何体为底面半径为1cm、高为3cm的圆柱上部去掉一个半径为1cm的半球,所以其体积为V=πr2h-πr3=3π-π=π(cm3).8.已知三个函数f(x)=2x+x,g(x)=x3一8,h(x)=log2x+x的零点依次为a,b,c则

A.a<b<cB.a<c<bC.b<a<cD.c<a<b参考答案:B9.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5 B.4 C.3 D.2参考答案:C【考点】等差数列的通项公式.【分析】写出数列的第一、三、五、七、九项的和即5a1+(2d+4d+6d+8d),写出数列的第二、四、六、八、十项的和即5a1+(d+3d+5d+7d+9d),都用首项和公差表示,两式相减,得到结果.【解答】解:,故选C.10.已知三棱锥A﹣BCD的各棱长均为1,且E是BC的中点,则?=()A.B.C.D.﹣参考答案:D【考点】平面向量数量积的运算.【分析】先求出DE的长,再根据向量的三角形法则把?转化为;再结合数量积计算公式即可得到结论.【解答】解:在△BDC中,得DE=∵====||?||cos∠ADC﹣||?||cos∠EDC=1×1×﹣1××=﹣.故选D.二、填空题:本大题共7小题,每小题4分,共28分11.已知扇形AOB半径为1,∠AOB=60°,弧AB上的点P满足(λ,μ∈R),则λ+μ的最大值是;最小值是

.参考答案:,

【考点】平面向量数量积的运算;向量在几何中的应用.【分析】建立坐标系,设∠BOP=θ,用θ表示出P点坐标,得出λ+μ及关于θ的表达式,根据θ的范围和三角函数的性质得出答案.【解答】解:以O为原点,以OB为x轴建立平面直角坐标系,设∠BOP=θ,则P(cosθ,sinθ),B(1,0),A(,),∵,∴,即.∴λ+μ=cosθ+sinθ=sin(θ+),∵P在上,∴0,∴当时,λ+μ取得最大值.=(,﹣sinθ),=(1﹣cosθ,﹣sinθ),∴=()(1﹣cosθ)+(﹣sinθ)(﹣sinθ)=﹣cosθ﹣sinθ=﹣sin(θ+).∵0≤θ≤,∴≤≤.∴当=时,取得最小值﹣.故答案为:,.12.已知过抛物线焦点的弦长为12,则此弦所在直线的倾斜角是__________.参考答案:45°或135°略13.已知一组数据,,,的线性回归方程为,则_______.参考答案:1.84【分析】样本数据的回方程必经过样本点的中心,该组数据的中心为,代入回归方程,得到关于的方程.【详解】设这组数据的中心为,,,,整理得:.【点睛】本题考查回归直线方程经过样本点中心,考查统计中简单的数据处理能力.14.设,现有下列命题:①若,则;②若,则;③若,则;④若,则其中正确命题的序号为

.参考答案:①④15.不等式的解集是或,则

.参考答案:16.若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是__________.参考答案:4略17.函数在时取得极值,则实数_______.参考答案:a=-2

略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四棱锥S﹣ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD.(1)求证:SO⊥平面ABCD;(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A﹣PCD的体积.参考答案:【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】综合题;转化思想;综合法;立体几何.【分析】(1)根据线面垂直的判定定理,容易判断BD⊥平面SAC,所以BD⊥SO,而SO又是等腰三角形底边AC的高,所以SO⊥AC,从而得到SO⊥平面ABCD;(2)连接OP,求出P到面ABCD的距离为,利用V三棱锥A﹣PCD=V三棱锥P﹣ACD,这样即可求出三棱锥A﹣PCD的体积.【解答】(1)证明:∵底面ABCD是菱形,∴AC⊥BD.又∵BD⊥SA,SA∩AC=A,∴BD⊥平面SAC.又∵SO?平面SAC,∴BD⊥SO.∵SA=SC,AO=OC,∴SO⊥AC.又∵AC∩BD=O,∴SO⊥平面ABCD.(2)解:连接OP,∵SB∥平面APC,SB?平面SBD,平面SBD∩平面APC=OP,∴SB∥OP.又∵O是BD的中点,∴P是SD的中点.由题意知△ABD为正三角形.∴OD=1.由(1)知SO⊥平面ABCD,∴SO⊥OD.又∵SD=2,∴在Rt△SOD中,SO=,∴P到面ABCD的距离为,∴∴VA﹣PCD=VP﹣ACD=×(×2×2sin120°)×=.【点评】考查线面垂直的判定定理,菱形对角线的性质,线面平行的性质定理,以及三角形的面积公式,三棱锥的体积公式.19.(本题满分12分)已知函数f(x)=x3+x2+ax+b,g(x)=x3+x2+1nx+b,(a,b为常数).(1)若g(x)在x=l处的切线方程为y=kx-5(k为常数),求b的值;(2)设函数f(x)的导函数为,若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+1n2,求a的取值范围.参考答案:(1)∵所以直线的,当时,,将(1,6)代入,得.(2)

,由题意知消去,得有唯一解.令,则,

所以在区间(-∞,-),区间(-,+∞)上是增函数,在上是减函数,又,故实数的取值范围是.(3)因为存在极值,所以在上有根即方程在上有根.

记方程的两根为由韦达定理,所以方程的根必为两不等正根.

所以满足方程判别式大于零故所求取值范围为

20.(14分)某海轮以30公里/小里的速度航行,在A点测得海面上油井P在南偏东60°,向北航行40分钟后到达B点,测得油井P在南偏东30°,海轮改为北偏东60°的航向再行驶40分钟到达C点,求①PC间的距离;②在点C测得油井的方位角是多少?参考答案:【考点】解三角形.【专题】应用题;转化思想;综合法;解三角形.【分析】①在△ABP中,根据正弦定理,求BP,再利用余弦定理算出PC的长,即可算出P、C两地间的距离.②证明CP∥AB,即可得出结论.【解答】解:①如图,在△ABP中,AB=30×=20,∠APB=30°,∠BAP=120°,根据正弦定理得:,∴BP=20.在△BPC中,BC=30×=20.由已知∠PBC=90°,∴PC=40(nmile)

∴P、C间的距离为40nmile.②在△BPC中,∠CBP=90°,BC=20,PC=40,∴sin∠BPC=,∴∠BPC=30°,∵∠ABP=∠BPC=30°,∴CP∥AB,∴在点C测得油井P在C的正南40海里处.【点评】本题给出实际应用问题,求两地之间的距离,着重考查了正弦定理和解三角形的实际应用等知识,属于中档题.21.如图,点A是椭圆C:+=1(a>b>0)的短轴位于y轴下方的端点,过点A且斜率为1的直线交椭圆于点B,若P在y轴上,且BP∥x轴,·=9.点P的坐标为(0,1),求椭圆C的方程.参考答案:解:∵直线AB的斜率为1,∴∠BAP=45°,即△BAP是等腰直角三角形,|AB|=|AP|.——————4分∵·=9,∴|AB||AP|cos45°=|AP|2cos45°=9,∴|AP|=3.∵P(0,1),∴|OP|=1,|OA|=2,即b=2,且B(3,1).——————8分∵B在椭圆上,∴+=1,得a2=12,∴椭圆C的方程为+=1.————————12分22.如下图,给出了一个程序框图,其作用是输入的值,输出相应的的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论