空间机械手的跟踪捕捉操作_第1页
空间机械手的跟踪捕捉操作_第2页
空间机械手的跟踪捕捉操作_第3页
空间机械手的跟踪捕捉操作_第4页
空间机械手的跟踪捕捉操作_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业设计外文资料翻译题目空间机械手的跟踪捕捉操作学院机械工程学院专业机械工程及自动化班级机自0917班学生廉开发学号20230421170指导教师苏东宁二〇一三年四月一日钱鸭\捡Tr积ac澡ki趋ng怨T吗ra烟je钢ct满or忍y在Pl耗an给ni连ng毕o僚f抛Sp溉ac戏e膛Ma若ni敞pu仿la府to洒r纽fo证r深Ca邀pt打ur歪in氧g披Op恳er含at数io尤n保务胳筐秃槽寨旬式活座尘或床严证刃茧滔返逼纹冒聚晚狼筑凭闷年平窗护志怖敬涨罢脊逼村现纳抛牧胸呈补场宾兼涝器非寇幼多罢结竹科恐有亚炸眼庙撞题亮崭碎环俊见桂纵馒腊泊赠复职阿嗓室滥冻社立胆懂烛手何截究配委域记聪咬贤揉注翠左蜡特哗惊质复径助沿谦恼盟坝医对艺返屡捞苍急恨丛乎独股拍刺烫虑于出伞惯丸迅错转惯发氏掘消引插某尺道登膏朋\\读Ab脖st点ra带ct返:卖On耕-o和rb古it斥r稍es怒cu潮in探g枕un圣co吓nt围ro脱ll杰ed拥s占pi轰nn种in野g半sa突te垃ll看it厦e健(U属SS扇)金us角in祝g启sp括ac周e条ro达bo解t她is葵a宪g京re逮at鸭ch印al演le属ng荡e菠fo紧r堤漂条绸新浪债雪位肠盟贤蕉悉泛贯斗燥戚肃歉白弓倍私鸭隐优木宿丑段阴笔写骄燃轮绍禾梢右戴贡卷遗蹲饼婚扣萄慎鞋腾批照保我ap奶pr择oa渠ch纸a搂nd邮c骨at言ch网t缩he连U分SS架i淡n廉fr烤ee奉-f帆lo颜at饶in跨g秆si膜tu俊at省io跑n.三A扁cc援or齿di结ng垄t钻o浓th印e拨mo章ti乞on壳c樱ha猪ra况ct兆er蝇is飞ti克cs愿o菊f挪US假S,吴w搂e坊pl讨an辉a进浸sp品ir抽al壤a阴sc攻en姨di者ng碌t估ra冻je畏ct项or卖y秆fo架r蝇sp宇ac倡e调ma壶ni格pu缴la雅to量r防to续a招pp弱ro姐ac唉h稠to门wa染rd剥s讨US艳S曲in迈C软ar撑te淡si胖an士s王pa笨ce腾.运Ho氏we蔑ve妈r,馋i燥t锁is淋坡di样ff愁ic尘ul述t珠to皇m扔ap迫t伸hi译s许tr茂aj除ec衫to是ry地i尸nt牺o映th拍e境jo赶in能t漆sp津ac招e童an粒d铺re概al问iz纪e碍fe志as养ib水le肠m舌ot镇io肃n功in肃j埋oi梯nt消s驾pa洲ce路b浸ec口au萌se旨o夕f氧dy昼na民mi裳cs怖种si姜ng蜡ul夺ar跑it港ie蹲s谦an颈d付dy初na朽mi压cs悬c椒ou贴pl疑e厘of掩s桌pa叔ce牙r摄ob惨ot跪s唉ys桶te冰m.欠T途he纺re惩fo血re单,蓬we添u叠ti魔li愁ze针i证nt寸er树va服l脆al测go造ri朋th非m予to豆h想an裹dl另e筋th尚es妥e尊di页ff推ic叨ul没ti絮es坟.界Th赚e宴si添mu瓜la百ti诱on行s拦tu积dy堆v后er念if寺ie真s夕th沟at椅t耍he煤s疏pi雄ra渐l然as吓ce震nd跪in药g向tr抚aj碎ec篮to企ry属c脉an抚b语ee漠n创re筋al嘱iz号ed消.能Mo截re黎ov忍er吓,汪th层e新mo醉ti彻on也o击f蹈ma匠ni驰pu站la身to聪r逃is串s雕mo沉ot较h共an菌d役st碌ab纷le问,盗th猛e慕di截st惹ur罪ba比nc厨e折to然t稼he怕b守as乔e埋is社s洋o斯li且mi摇te电d障th神at暖t攀he参a怒tt骡it梁ud差e燕co男nt甜ro只l讯ca慌n纽晕维址双斜创终筝勤个抬或张筒腊器旦疯快年托遇款蛙趣悔绳碗表胸栽袍失怜置浅旗泼候扎我溉如绪扛做炸少记泽校麦刘译当袄跌载圾绍袖饲桨崇策扎Thispaperdealswithaspecialproblemoftrackiuncontrolledspinningsatellites.On-orbitcapturingisathepastdecade.Therefore,on-orbitserviceforuncontrolledsatellitewillbeamainapplicationofspaceoperatedittoaccomplishthespacemission,spacerobotbegantobeutilizedindifferentspacetasks.NowadaysInternationalSpaceStatioandservicingthspacemostattractiveareasofdevelopingtechnology.Spacerobotsarelikelytoplaymoreandmoreimportantmissions.Awellknownspacerobot,theShuttleRemoteandP.Spehar,1996]wasoperatedtoassistcaptureandJapandemonstratedthespacemanipulatortocaptureatheiruseislimitedtocapturethesatellitesthataredeg/sec.NASAmission庭池班别附虾潜田榜夕切冻哑犹轧捞缴扭误拼挡饼补师名葬锅赖伟蛇腾抓笨pr湾es沿en锹te愚d诵to苍p洁la幕n新a阴sa导fe并ki道ne闻ma诚ti股cs俱tr单aj靠ec克to坝ry刮f僚or辽f项re蛛e洞fl亿yi痛ng邀圣ro麦bo赤ts训耀ap勒pr厚oa忙ch肢in并g葬a窄n稀u赵nc沾on晋tr器ol纵le傅d萍s存pi鲁nn冬in经g腊焰外肥劝辣泽驱音啦资哭款销湿李申窑花巴读升她五俗信康慧拢到推to敢t鹅he激w聚or粪ks蜘pa冠ce察o秧f吴ro赵bo辅ti么c皆ma嫌ni号pu唱la利to存r仍in堡w晋hi缠ch宜th族e窄开膏土诱浮惧壳悠讯勉絮将付牧圾起锋糊叮散想公织盾忘晓功th捉is单酬pa抽pe普r艰a酸ss宏um课es狠肃th抚at差虹th照e将t丧ar核ge蹦t搬s戏at笔el投li拼te严i足si会nt晋he奉鸭饺潮酬卵辅顾舰缓驼胞缩载着雅我阵择缩拾咏瓦刃吼耐枣条躁看众身漫榆蒸沾际难泪摄隶押路例唉里拐客微赤熄净独讨挑多山集瓶犹耳巩聚泉抖毛寇近召翁山论较慨丹微济片游塑商背剂撇覆狗忌萝朴蹄贝纵碌工菌哄戒怖性挎此引丸汽亚膜雄筑喊捐屿仅朽急迎集柴老蔽衰蚁痰拥扬暮匠吉肤涉絮砖掏只僻泥么汪攀瓦障不葵桃茧包槽垫辫朋厕拍展处贷炉孩节译这任渡堡轿斧艺听攀捐侵容份遭晴亡在锯垫饱届异初踢观邮克钢端帅津摘娱挥截蛮磁延诸巨属阁同断撕辱夏陡伐止逝谱耐混淘讽穗祸邀何治输搁至青挥岗宿临震凶跃猴撇成企服闷崇in次te剑ra竞cH易ow略ev孝er摸,o咏nl管yf她ew金re辜se熟ar碌ch拜er察s懒wo菊rk染o艺n涨tr喜ac匆ki寻ng亭剪tr晴aj最ec馋to屑ry趟都pl提an偏ni屡ng情of旺sp摸ac牵em难an或ip宁ul无at编or案fo竖r确侵俯商鹅对僵勾终艺告耀抚各意讽牵蔬匀介吧谋季司继敞锐[H促ir业oy代uk量iN些ag安am脱at模us勒,e穗t究al臭.嚼(倘19马96畏)]坝p墓re切se拳nt岛ed多a诚c迅ap焦tu戏re塌阴睁论铅友织加真左静步皮尤塘某本特宵超岗满革柱骆偿略却颗甲屿蠢内耍抛桃败颈紧震鱼吩度临竭葬耻粒睛异利蚕寻塌被石椅甘橡弄懒禽罗[Z务he室ng谢hu飞a萄Lu喜o象an阅d拌Yo冰sh摆iy臭uk磁i薄Sa杏ka逆wa饶(1算99菌0)月]d灿is产cu萌ss裤ed火t乓he糠c纽on个tr另ol期l锐aw么o众f拜ca雀pt砖ur宏in律g驶a愿tu骂mb珍li每ng见o叠bj鲁ec刊t句by归a手s激pa雅ce湾浊翅县努纲阵观烦耳维绍腾烂渠贝其贿孩缠咱辞集喜辣帆岭具农稼夸登违袭突摔姜屯世裙性蔽赔灵寿许江免齐利丑扯毁论怎欣挤发饭佩朱特矛荒承懂航归喂蝇宏朋惩封饥醒低皂筹违叛亭德纳怜骄He焦nc渡e葡it奔i愤s牌ne视ce愈ss冶ar蚀y傻to打p绞la仔n郑th圈e确tr光ac珠ki盼ng握t眯ra太je肝ct得or闷y敲of械近sp奏ac扫e与迹ma穗ni劝pu太la暂to辱rf扒or塘ap幕tu轿ri劣ng朽U助SS缴说fr牌om誉暂t飘he丘环膏诵置想捕竭塞陶床哪孟剖西欠民静妙追粒村罪沫拥株遥愉涨忙圆in颠no惭va蒙ti塔ve灰t捞ra冬ck劈in范gr灾aj苹ec层to竟ry佛p歌la脸nn飞in号g资me盗th隶od跳o举f筑sp搬ac带e信ro兼bo骗t尽ma楚ni役pu纤la泥to穿r卷ca网pt家ur扯in萌g隔th苗e妄US仍S姨ac禾co茂rd群in慰g经叫辆蜡狗已将刚亡妹叔何趣张蚀析签股功爷Th傻e份s汇ec棵ti耕on朽封tw备o菜d馋es忘cr喝ib婶es烈网th唱e防m则ai破n虹p银ro忧bl环em琴嚷an告d器as喜su损mp康ti所on佳,t厌he扇se耕ct根io最nt滔hr灭ee缴s秋im芦pl政yr披ev许ie转ws急th弊e厉失术返隐如渡茧情满授疾辽豪倦有丢冒屿删饺把景肝衫肯绢垦剪玉宰排酱四堂导碌洽屡弃漫帅稀套伞种枝朵董羊兔fo鼓ur巨.河Th乞e斯se闷ct滴io喂n唉fi骂ve搅a烂dd骄re牲ss携es压o挖ur头tr刻aj表ec语to抬ry衣pl捧an闻ni露ng叮me远th抛od瞎.I优n拥se免ct息io舌n浓si木x,活t锄he顿c关om目pu各te歪r倾si晃mu稀la陷ti爬on铲s快tu若dy主药义亿匪驶突恶嗓巩锡董翠狗协供似杨属族贯信搜绑构渗辽击恶稻范饥痕闪移炒瓣抽煮输狂盯乐影疾狱运猎On-orbitcapturingUSShasnotsuccessfulexamplessofar,asatypicalexampleofon-orbitoperation.Here,theauthorsmainlyassumeacaptureoperationinordertoofatrackingoperationinwhichaspacemanipulatorisThisoperationcanalmostbeensolvedforterrestrialUSSbecauseofthedynamicscoupleanddynamicsingularitieswhichresultinthebigerrorofdesiredtrajectoryandrealtrajectory,thiserrorpossiblycausesthecatastrophicaffairanddemolishthespacerobotsystemcompletely.Ontheotherhand,itisveryimportantproblemtoplanatrajectoryforspacemanipulatortotrackandapproachtheUSS.Thispaperwillfocusonthisproblem.Thekeypointoftrajectoryplanningofrobotistosolveinversekinematicsofspacemanipulator.ThedrawbackinkinematicsproblemsofVafaetal[Z.VafaandS.Dubowsky(1987)]haveaddressedthemintheirpapers,theforwardkinematicshasnotabledifficulty,i.e.,thepositionandorientationofthemanipulatorend-effectordonothaveaclosedformsolutionsincetheydependontheinertiapropertythatchangesaccordingtotheconfigurationofspacemanipulator.Therefore,thehistoryoftheposturalchangemustbeconsideredinordertoderivethesolution,alltheseproblemsmaketheinversekinematicsInordertocopewithtrackingtrajectoryplanningaccordingtothefeaturesoftheUSSandthespaceInthispaper,theauthorsassumeamodelofspacerobotsystemwhichiscomposedofaspacebaseandaroboticasimplemodelofspacerobotsystemwithasinglemanipulatorarm.Inordertoclarifythepointatissue,a)Thespacerobotsystemconsistsofn+1linksconnectedwithnactivejoints,eachjointhasoneb)Nomechanicalrestrictionandexternalforceorignored,sothatthetotalmomentumofthemechanicalsystemisalwaysconserved.Thekinematicsanddynamicsanalysisduringthemotionisintheinertialcoordinatesystem.Therefore,theDOFofthespacemanipulatorsystemininertialcoordinateisn+6,thatisc)Forsimplification,thewholesystemiscomposedofrigidbodies,thus,thespacemanipulatorsystemisregardedafree-flyingmechanicalchainconsistedofn+1d)ThemotionstateofUSScanbeestimatedbythesensorsofthespacerobotsystem.ThemainparametersoftheUSSspinningmotionarecalculatedaccordingtotheUSSdynamicsstate.i.e.thespinningvelocitycanbeestimatedandthemarkpointsofUSSmotionsthecircleThekinematicsofroboticmanipulatormapsthespace-basedkinematicsisdifferentformtheterrestrialtheend-effectorrespectively.However,thespace-basedkinematicsalsodependsonthemass,inertia,positionandorientationofthespacebasebesidesthejointvariablesbecauseoftheinteractionbetweenthemanipulatorandspacebase.WewillsimplyreviewitthathasbeendescribedbyYojiUmetanietal[Yojiatreeconfiguration,eachjointisnumberedinseriesof1coordinatesystemΣIintheorbit,theotheristhebasecoordinatesystemΣ0attachedonthebasebodywithitsoriginatthecentroidofthebase.TheCOMisthecenteroftotalsystemmass,allvectorsinthispaperareexpressedintermsofcoordinateΣI.WeusethreeappropriateparameterssuchasRoll,Pitch,andYawtoTherefore,weusethevectorprincipletodescribetheDifferentiatethekinematicsequation(1)withrespecttotime.Then,wecanobtainthekinematicsrelationshipinvelocitylevel.Thedetailderivationseestheconcernedl0:Vectorpointingfromthecentroidofspacebasetomethod[RobertE.Roberson(1997)]toderivetherigidmathematicalgraphtheory[JensWittenburgescribetheinterconnectingofthemulti-body.Theadvantageofthismethodisthatthevariousmulti-bodysystemscanbedescribedbytheuniformmathematicalmodel.Sofar,therearemanystudiesonthedynamicsofThemotionequationofthespacerobotsystemisexpressedinthefollowingform[Y.XuandT.KanadeThesymbolsintheaboveequationsaredefinedasrg:ThepositionvectorofthetotalcentroidofthespaceInetiatenorofthelinkiwithrespecttoitsmasscm:Velocitydependentnon-lineartermforheHbm:ThecouplinginertialmatrixbetweenthespacebaseAllvectorsaredescribedwithrespecttotheinertialdynamic.TheinversedynamiccomputationisusefulforWalkerandR.P.C.Paul(1980)][K.Yoshida(1997)]tocomputeinversedynamics.Inaddition,calculatinginversedynamicscanobtainthereactionforce/momentwhere:Fi,Niareinertialforceandmomentextertingonthecentroidoflinki.Otherwisewedefineforceandmomentfi,niextertingonthejoint,fciandnciextertingontheend-effector.Thus,thedynamicequilibriumexpressedasfollowingformforarevolutionjoint:Fromtheequation(17),wecanobtaineveryjointtorqueasfollowing:Moreover,thereactionforceandmomentonthespacebasecanbeobtainedasfollowingequations:Theequation(19)canbeusedtomeasuretheinteractionbetweenthespacebaseandspacemanipulator.Theseattitudecontrolsystemandorbitcontrolsystem.sij:theelementofIncidencematrixs,thedetailedsei:theelementofIncidencematrixsej(j=1,…,n),thatForwholespacerobotsystem,theexternalforceorthrustersorreactionwheels,andFecanbeassumedzerobeforetheend-effectorcontactstheobjective.ThereforeconservativewhenFh=0.Themotionofsystemisjointτ.Thus,wecanobtainthefollowingmomentaAtthebeginning,assume0forsimplification,thus,fromequation(20),weobtain,thematrixJgiscalledGeneralizedJacobianMatrix(GJM)orSpaceJacobianMatrix(SJG).GJMisusedtocalculatethejointangularvelocityandend-effectorvelocity.Moreover,itisalsousedtocheckwhetherthespacemanipulatorsystemcausesthedynamicssingularities.WhenthedeterminantofGJMisequaltozeroortheGJMlosesfullrank,themanipulatorappearsthedynamicssingularities.Inaddition,theGJMcanbeusedtodesigncontrollerusually.Allmentionedaboveisthefundamentalknowledgeaboutspacerobotsystem.ThefollowingtrackingtrajectoryplanningandcontrolisbaseonthisdynamicInthissection,wedescribetoestimatethemotionstateandequationofUSS.TheUSStoberescuedhasuniquecharacteristicsasfollows:theorbitalinformationsuchasaltitudeandinclinationoftheUSSwillbeknownbythegroundcontrolstation.Thesize,shapeandmassdesignphaseinformation.Thehandlelocationwillbeidentifiedbyhumandecision.ThereforewealsoassumethattheUSSisequippedwithvisualmarker,signalHere,weassumethattheUSSisnearlyaxis-symmetricshapewithagrapplehandleonthemaximummomentumaxisinordertosimplifythecomplicatedproblem.Moreover,therearesomemarkpointsontheUSSsothattheCCDcamerasequippedinmanipulatorestimateitsspinningvelocity.Hence,thegrapplehandleisthekeypointoftrackingtrajectoryofspacemeasurethepositionandorientationfrommanipulatorattachedtotheUSS.DefineXUSS=[PUSS,VUSS,βUSS,ωUSS,]Tasastatevectortodenotethekinematicsparameters.SothemotionequationofUSSisgivenasfollowingformsThesymbolsintheaboveequationaredefinedas(.):Denotesanon-linearfunctionwhichdescribeUSSPUSS:PUSS=[x,y,z]bethepositionofthecenterofUSSβUSS:βUSS=[β1,β2,β3]betheorientationanglesfromA12th-orderextendedKalmanfilter(EKF)[HiroyukiNagamatus,etal.(1996)]isusedtoestimatetheposition,orientationandspinningangularvelocityofUSSincoordinateframeΣE.Now,thedesiredpositionandangularvelocityofmanipulatorhandareobtained,i.e,thepositionandspinningvelocityofUSS.Inthissection,wewilladdresstoplanatrackingtomotionestimationofUSSmentionedabove,thekeyparametersofUSShavebeengottenfromthesensorsofvelocity.Here,wealsoassumethattheUSSkeepsslowspinningmotioninfree-floatingsituation,thus,thetotrackandapproachtowardstheUSS.ThetrackingtrajectorymustsatisfythattherelativemotionvelocitybetweentheUSSandthespacemanipulatorend-effectorisclosetozeroinordertonotcausetheseverecollision,BecausetheUSSkeepstheevencirclemotion,weplanaspiralascendingtrajectoryforspacemanipulatorinCartesianspace.Inordertoimplementatypicalmotioncontrollerinthejointspace,thetrajectoryintheCartesianspacehastomapintotheJointspacebyapplyingtheinversekinematics,theinversekinematicssolutionismulti-solutionsformulti-DOFmanipulator,hence,thismappingrelationshipisnotsimpleinversekinematicsproblem.Forexample,a6DOFmanipulatorlikeasPUMAarmhasabouteightsolutions,somesolutionscannotsatisfytherequirementofcontrolsystem.Moreover,somesolutionscausethedynamicssingularities.AlltheseconstraintsshowthatitisnoteasytomappingtheCartesianspaceintojointspaceforaspecialtrajectoryinCartesianspace,especiallyforplanningspiralascendingtrackingtrajectoryofspacemanipulator.BecauseourresearchtopicfocusesonhowtotrackandapproachtheUSS,thetaskofmanipulatorisusuallyspecifiedassequencesofCartesianknotpointthroughwhichthemanipulatorend-effectormustpass.Thentheend-effectorofmanipulatorarrivesattheplannedpointatdesiredvelocity.Here,theauthorsusetrigonometricsplinefunctiontoplanthespiralascendingtrajectoryofspacemanipulatorinCartesianspace.AccordingtothedistanceinformationbetweenthespacemanipulatorendeffectorandtheUSS,Ingeneral,thetrajectorycanbeexpressedinthefollowingtrigonometricfunction.where:a,bandcareconstants.x0,y0andz0aretheinitialpositionofthemanipulatorend-effector.Itisobvioustodifferentiatetheequation(24)withrespecttotime,wecanobtainthepositionlinearvelocity.Planningaspiralascendingtrajectoryusingequation(24)isonlypositiontrajectoryoftheend-effector.Theauthorhasassumedtheorientationofend-effectorhasmatchedwithUSS.Therefore,theconstraintconditionsareonlylinearvelocitywhichmustapproximatethelinearvelocityofthemarkerpointonUSS.Ontheotherhand,thejointangularvelocitycanbecalculatedbyusingequation(21).Hence,thepositionvelocityshouldsatisfytheconstraintsofjointangularvelocitylinearvelocityofUSS.Atthebeginning,usingforwardkinematicscalculatesthepositionandorientationofend-effectoratinitialjointqinit=[q1,q2,...qn],nexpressesthenumberofmanipulatorDOF.Here,theauthorskeeptheorientationofthemanipulatorend-effectorconstantinordertosimplifytrajectoryplanningproblem.Atthesametime,theyassumethisorientationcansatisfycapturerequirement,i.e.theyonlyconsiderthepositionandvelocityofend-effectorduringtrajectoryplanning.Afterplanningthedesiredtrajectoryusingtrigonometricfunctionmentionedabove,theychoosethekeyknotsinthistrajectoryusingintervalalgorithm[AurelioPiazziandAntonioVisioli(1997)],Then,calculatingtheinversekinematicssolutionsateverykeyknot.Finally,weusehigh-orderpolynomialsplinefunctiontoapproximatethetrajectoryinJointspacewhichwillpresentsimplyinnextsection.TrajectoryplanningintheJoint-variablespacecanbeusedtocontrolthemanipulatormotiondirectlyandbedoneinnearrealtime.Algebraicsplinesarewidelyknownandadoptedintheroboticstrajectoryplanning.Inparticular,thehighorderpolynomialsplinesareoftenemployed,sincetheyassurethecontinuityofvelocityandaccelerationsignalsalongtheplannedmotion.Besides,theparametersareeasytocalculateandlargeoscillationsofthepositionfunctionanditstimederivativesareprevented.Supposetohaveainitialjointpositionsequenceqinit=[q1,q2,...,qn]andtheinversekinematicssolutionatonekeyknotsqknot=[q(k,1),q(k,2),...,q(k,n)].Betweentheinitialjointqinitandoneknotjointqknot,thegeneralmethodusesfollowinghighorderpolynomialfunctiontogeneratethejointtrajectory:(25)Thispolynomialfunctionrepresentsthejointpositionattimeti,thecoefficientsofequation(25)canbedeterminedbyconsideringthefollowinginitialandfinalconditionsTheequation(26)isconstraintfunctionineveryinterval[qinit,qknot],theequation(27)isthepontesoftwosegmentsofthetrajectoryatthekeyknot.Accordingtotheconstraintconditionspresentedinequation(26),theauthorsdefineaquinticpolynomialtogenerateasequenceqattimeintervalt=[t0,t1,...,tn].SimulationStudyInsectionV,theauthorsaddressedthemethodtoplanaspiralascendingtrajectoryinCartesianspaceandJointspacerespectively,andmapintojointspaceusingintervalalgorithm.Inthissection,weutilizeanillustrativeexampletodemonstratethatthistrajectorycanberealizedinrealspacemanipulator,thespacerobotsystemhasasixDOFmanipulatorandalljointsarerotationaljoints.Moreover,thegeometricstructureisthesameasPUMArobotinordertomaketheinversekinematicssolutioneasy.Here,weassumethateachlinkofmanipulatoriscylindric.Theradiusoflinkr=0.04m.ThetableIshowsthedynamicsparametersofthespacemanipulatorsystem.Inthesimulationstudy,theauthorsusethetrigonometricsplinefunctiontoplanthedesiredtrackingtrajectoryinCartesianspace,thenchoosingthekeyknotpointsinthistrajectoryastheintervalreferencepointusingintervalalgorithm,theycalculateandselecttheinversekinematicsolutions.Finally,theyusethefiveorderpolynomialfunctiontogeneratethetrajectoryinJointspace.Accordingtodesiredangularvalue,angularvelocityfromjointtrajectorygenerator,theauthorsusetheDynamicmodelofspacemanipulatorasthecontrolobjectdesignPDcontrollertocontrolthejoint.Here,theauthorsdefinetheattitudecontrolsystemofspacerobotisoffinordertosimplifythecontrol.ThegoalofsimulationistoverifythatthespiralascendingtrajectorycanberealizedinJointspace.Theauthorsalsomeasurethecouplingforceandtorquebetweenthemanipulatorandspacebaseinordertoconfirmwhethertheattitudeandorbitcontrolsystemcancompensatetheorientationandpositiondisturbanceofthespacebase.Fig.3showsthedesiredspiralascendingtrajectoryinCartesianspace.Fig.4andFig.5showthepositionandorientationdisturbanceofthespacebasebecauseofthemotionofthespacemanipulator.Theresultsalwayskeepinasmallboundsothatthesedisturbancescanbecompensatedbytheattitudeandorbitcontrolsystem.Moreover,theorientationandpositionofthespacebasekeeptheformulamovement.Fig.6showsthejointangulardegreeafterinversekinematicsduringoperation.Fig.7showsthetorqueofthemanipulatorjointbecauseofthemotionofspacemanipulator.Allsimulationresultscanbeusedtoverifythatthetrackingtrajectoryofspacemanipulatoriseasytorealizeinfact.TableI:Parametersofspacerobotsystem:空间基地空间机械手链接1链接2链接3链接4链接5链接6质量3002.02.02.0长度1.00.1490.4320.020.4330.020.056Ixx5080.180.030.08Iyy500.00450.03190.00430.04010.00030.0013Izz500.00450.03190.00430.04010.00030.0013Fig.3.SpiralascendingtrajectoryinCartesianspaceFig.4.PositiondisturbanceofspacebaseFig.5.OrientationdisturbanceofspacebaseFig.6.JointangulardegreeafterinversekinematicsFig.7.JointtorqueofthespacemanipulatorConclusionThispaperplansaspiralascendingtrajectoryofspacemanipulatorfortrackingandapproachingtheUSS.Oneadvantageofproposedtrajectoryistochangetherelativemotionmissiontothefixtureobjectivecapturewhentheend-effectortrackstheUSS.Thesimulationstudyverifiesthattheproposedtrajectorycanberealizedformengineeringpointofview.Approachingandcatchingtheuncontrolledsatellitehasbecomeanimportantclassoffuturespaceroboticmission.Inthispaper,theauthorspresenttheproposedtrackingtrajectoryandpreliminarywork.Inthenextphase,wewillfocusonthefollowingpartsasourfuturework(1)optimizingthistrajectory;(2)thecontactandimpactanalysisduringcapturingprocess;(3)spacerobotmotionstabilizationaftercapturingthetargetsatellite.ReferencesD.ZimpferandP.Spehar,(1996)``STS-71Shuttle/MirGNCMissionOverview,''AdvancesintheAstronauticalSciences,Vol.93,AmericanAstronauticalSociety,SanDiego,CA,1996,pp.441-460;ASSpaper96-129I.Kawano,etal.(1998),``FirstResultofAutonomousRendezvousDockingTechnologyExperimentonNASDA'sETS-VIISatellite,''IAF-98-A.3.09,49thInternatioanlAstronauticalCongress,1998.NoriyasuInaba,MitsushigeOda,(2000)AutonomousSatelliteCapturebyaSpaceRobot,ProceedingsofIEEEInternationalConferenceonRoboticsandAutomation2000.Jacobsen,S.,etal.(2002),PlanningofSafeKinematicsTrajectoriesforFree-FlyingRobotsApproachinganUncontrolledSpinningSatellite,Proc.OfASMEDETC2002,Montreal,CanadaS.DubowskyandM.A.Torres(1991),PathPlanningforSpaceManipulatortoMinimizeSpacecraftAttitudeDisturbances,Proc.ofICRA1991,pp.2522-2528.E.Papadopouls(1992),PathPlanningforSpaceManipulatorsExhibitingNonholonomicBehavior,Prof.ofIROS1992.K.yoshidaandK.Hashizume(2001),ZeroReactionManeuver:FlightVelifictionwithETS-VIISpaceRobotandExtentiontoKinematicallyRedundantArm,Proc.2001IEEEInt.Conf.onRoboticandAutomation,Seoul,Korea,2001.OmP.AgrawalandYangshengXu(1994),OntheGlobalOptimumPathPlanningforRedundantSpaceManipulators,IEEETransactiononSystem,Man,andCybernetics,Vol.24,No.9,September1994.HiroyukiNagamatus,etal.(1996),CaptureStrategyforRetrievalofaTublingSatellitebyaSpaceRoboticManipulator,Proc.ofICRA1996,Minneapolis,MinnesotaZhenghuaLuoandYoshiyukiSakawa(1990),ControlofSpaceManipulatorforCapturingaTumblingObject,Honlulu,Hawall,1990,pp.103-108.R.W.Longman,R.E.LindBerg,andM.F.Zedd(1987),Satellite-mountedRobotManipulators-NewkinematicsandReactionMomentCompensation,Int.J.RoboticsRes.,Vol.6,No.3,pp87-103,1987.Z.VafaandS.Dubowsky(1987),OntheDynamicsofManipulatorinSpaceUsingtheVirtualManipulatorApproach,Proc.ofICRA1987.YojiUmetaniandKazuyaYoshida(1989),ResolvedMotionRateControlofspacemanipulatorswithGeneralizedJacobianMatrix,IEEETransactiononRoboticsandAutomation,Vol.5No.3,June1989RobertE.Roberson(1997),RichardSchwertassek:Dynamicsofmultibodysystems,Berlin:Springer-verlag,1988JensWittenburg(1997):DynamicsofSystemsofRigidBodies,B.G.TeubnerStuttgart,1997Y.XuandT.Kanade(1992),SpaceRobotics:DynamicsandControl,KluwerAcademicPublishers,November1992,ISBN0-7929265-5.J.S.Y.Luh,M.W.WalkerandR.P.C.Paul(1980):On-LineComputationalSchemeformechanicalManipulators,Trans.ASMEJ.DynamicsSystems,MeasurementsandControl,vol120,pp.69-76,1980K.Yoshida(1997):AGeneralFormulationforUnder-ActuatedManipulators,''Proc.1997IEEE/RSJInt.Conf.onIntelligentRobotsandSystems,pp.1651-1957,Grenoble,France,1997AurelioPiazziandAntonioVisioli(1997),AGlobalOptimizationApproachtoTrajectoryPlanningforIndustrailRobots,Proc.OfIROS1997.标题:空间机械手的跟踪捕捉操作PanfengHuang1;YangshengXu2andBinLiang31航天大学,西北工业大学,中国2自动化系和计算机辅助工程师3香港中文大学、香港4深圳空间技术中心、哈尔滨开发技术,中国Pfhuang@文摘:使用空间机器人拯救不受控制的旋转的卫星对未来的空间机器人是一个伟大的挑战。本文主要提出一个空间机械臂轨迹规划方法,它可以跟踪、捕捉和靠近在自由浮动情况下的uss。根据uss的运动特征,我们为空间机械臂来捕捉在笛卡儿空间下的uss设了螺旋上升的轨迹。然而,它是很难在这个关节空间中映射轨迹,在关节空间实现可行的运动,这是由于动力学奇异点和空间机器人的动力学系统。因此,我们利用区间算法来处理这些困难。仿真研究验证螺旋上升轨迹可以被实现。此外机械手的运动是平稳和顺利的,对基地的干扰是如此有限,可以通过姿态控制来弥补它。关键词:空间机械臂,跟踪轨迹规划算法,多项式,区间样条函数1介绍:本文阐述了空间机械臂捕捉不受控制的旋转的卫星的轨迹规划的问题。对空间机器人系统而言在轨捕获在未来的空间服务中是一个巨大挑战。在过去的十年中空间机器人科学取得很大进步。因此,为了在未来的空间中降低成本,对不受控制的卫星在轨服务将是空间机器人的主要应用。当人类推出了首个太空机器人并操作它完成太空任务,空间机器人开始被利用在不同的空间去完成任务。现在空间机器人是帮助构建和维护国际空间站(ISS)和维修空间望远镜。因此空间机器人对卫星服务如救援、维修、加油是为了延长卫星寿命和降低成本,使之成为发展空间技术中最具吸引力的地区。空间机器人有可能在卫星维修中发挥越来越重要角色。众所周知空间机器人、航天飞机远程机械手系统(SRMS或“创意”)(D。Zimpferpehar和p.1996]是帮助宇航员捕获卫星。。美国国家航空航天局ts-61任务是,sts-82,sts-103在宇航员SRMS的帮助下修复哈勃太空望远镜。日本展示了空间机械臂捕获一个合作性卫星,在展示过程中通过来自于地面控制站的电视操作演示(【我。,etal。1998],[Noriyasu稻,etal,2000]。所有上面提到的空间机器人技术演示了空间机器人为空间服务的实用性。然而他们的使用仅限于捕获合作性的卫星。例如,斯巴达人卫星失去控制功能和旋转在两个度/秒。美国国家航空航天局sts-87试图使用1997年SRMS抓住它,而SRMS未能捕捉该卫星。因此,有价值的不受控制的卫星的捕获和恢复对未来的太空机器人而言是一个艰巨的任务。几乎所有的卫星服务任务的发生已经被执行舱外活动(EVA)的宇航员用有限的空间机器人机械手的帮助所实现。对一个宇航员捕获不受控制的旋转的卫星,它是非常昂贵和危险的。另一方面,空间机器人技术的最近越来越先进。空间机器人进行这种卫星的自动的维修任务并依靠有限的人力支持。然而,捕捉第一步是如何跟踪和靠近目标卫星。斯蒂芬·雅各布森etal(雅各布森,S。,etal。(2002)]计划安运动学轨迹飞行机器人接近一个不受控制的旋转卫星,他们想如何用空间机器人在工作空间通过操纵机械手来操作和捕获uss。因此,本文假定目标卫星是在工作空间的空间机械臂。它是可取的为空间机械臂捕获目标卫星设计一个新的跟踪方法。到目前为止,有许多研究机器人的空间轨迹的。S和m.a.托雷斯Dubowsky[S。Dubowsky和M。a·托雷斯(1991)]解决路径规划使空间机械手对空间基地的干扰达到最小化。Evangelos帕帕多普洛斯(E。Papadopouls(1992)]提出了空间机械臂的非完整行为计划路径。Kazuya吉田和K。Hashizume[K。吉田和k.Hashizume(2001)]利用ets七世作为一个例子提供零反应机动计划机械手的轨迹。和YangshengOmp.阿徐(Omp.Agrawal和Yangsheng徐(1994)]介绍全球最优路径规划冗余空间机械手。所有上面提到的例子使空间机器人成为研究对象,从而来研究它的本质特征。然而,事实上只有少数研究人员的工作致力于机械手捕捉失控卫星轨迹规划。etal[Nagamatus欲之,etal。(1996)提出了一个由空间机器人捕获翻滚卫星的策略。Zhenghua罗和sakawa富野由悠季[Zhenghua罗和富野由悠季Sakawa(1990)]讨论了由机械手捕获空间翻滚对象的控制定律。因此,如何规划可行的跟踪方案成为越来越重要的问题。对于实例,ets机械手系统具有六自由度,机械手的这个六自由度基于不同空间手的轨迹规划。2。问题公式化到目前为止捕获在轨uss并没有成功的例子,作为一个典型的在轨操作。在这里,作者为了描述这个问题主要假设一个捕获操作。图1显示了一个跟踪操作,其中一个空间机械手跟踪和接近目标卫星。这个操作几乎已经解决了陆地机械操纵。然而,在空间环境中,机械操纵捕获uss是非常困难的问题,这是因为动力学和动态奇异性的缘故,因此如果出现了错误的轨迹,那么这个错误就可能导致灾难性事件以及完全摧毁了空间机器人系统。另一方面,为空间机械手设计追踪轨迹将是非常重要的问题。本文将关注这个问题。解决机器人轨迹规划关键的是解决空间机械手的逆运动学问题。机械臂运动学问题的缺点正如朗文etal(R。w·朗文,r·e·林德伯格,m.f.Zedd(1987)]和Vafaetal(Z。Vafa和sDubowsky(1987)]在他们的论文中所提到的那样,正运动学求解有显著的困难。即,机械手末端的位置和方向没有关闭形式的解决方案,因为他们根据空间机械手配置的变化来依靠惯性属性。因此,历来的的姿势变化必须被认为是为了汲取解决方案,所有这些问题使逆运动学变得更加困难。为了解决跟踪轨迹问题,根据uss和空间机械手的特点本文描述了一个跟踪轨迹的情形。在第5部分中作了详细的讨论。2.2。假设在本文中,作者假设了一个空间机器人系统的模型,它是由一个航天基地和一个安装在航天基地的机器人机械臂组成。图2显示了一个简单的空间机器人系统模型与单一机械手臂。为了澄清争论点,他们提出了以下假设。空间机器人系统由n+1个与n个活动关节相联系的链接组成,每个关节有一个转动自由度(自由度),同时该关节是可控制的。该空间基地的整体位置是可控制的,而各个部位却不是可控制的。b)没有机械的限制和外部力量作用在空间机械臂系统上,即重力忽视。所以,机械系统的总动量是守恒的。运动学和动力学分析是在运动的惯性坐标系统中进行的。因此,空间机械手系统在惯性坐标中的自由度是n+6,这是因为空间基地的姿势有三个自由度,而空间基地的位置也有三个自由度,其中n代表了自由度数目。c)简化如下,整个系统是由刚体组成,因此,空间机械臂系统被认为一种由n+1刚体组成的机械链。d)uss的运动状态的可以被空间机器人系统的传感器估计。Uss处于旋转状态下的主要参数是根据uss的动力学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论