负反馈放大电路的设计与仿真-课程论文全稿_第1页
负反馈放大电路的设计与仿真-课程论文全稿_第2页
负反馈放大电路的设计与仿真-课程论文全稿_第3页
负反馈放大电路的设计与仿真-课程论文全稿_第4页
负反馈放大电路的设计与仿真-课程论文全稿_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SHANGHAI课程论文COURSEPAPER装订线题目:仿真设计与分析装订线学院机自学院

一功率放大电路仿真一.OTL功率放大器的原理如图1所示为OTL功率放大器。其中由晶体三极管VT1组成推动级(也称前置放大级),VT2、VT3是一对参数对称的NPN和PNP型晶体三极管,它们组成互补推挽OTL功率放大电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。VT1管工作于甲类状态,它的集电极电流IC1由电位器RP1(RP1)进行调节。IC1的一部分流经电位器RP2及二极管VD,给VT2、VT3提供偏压。调节RP2,可以使VT2、VT3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。静态时要求输出端中点A的电位,可以通过调节PR1来实现,又由于RP1的一端接在A点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。C4和R构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。图1OTL功率放大器当输入正弦交流信号ui时,经VT1放大、倒相后同时作用于VT2、VT3的基极,ui的负半周使VT2管导通(VT3管截止),有电流通过负载RL,同时向电容C2(C2)充电,在ui的正半周,VT3导通(VT2截止),则已充好电的电容器C2起着电源的作用,通过负载RL放电,这样在RL上就得到完整的正弦波,其波形如图所示。在仿真中若输出端接喇叭,在仿真时只要输入不同的频率信号,就能在喇叭中能听到不同的声音。2.OTL电路的主要性能指标1)最大不失真输出功率Pom:理想情况下,在电路中可通过测量RL两端的电压有效值UO或RL的电流来求得实际的2)效率η:PV-直流电源供给的平均功率,理想情况下,ηmax=78.5%。可测量电源供给的平均电流IdC,从而求得Pv=UCC·IdC,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。在仿真平台上也可用功率表分别测出最大不失真功率和电源供给的平均功率。二、虚拟实验仪器及器材双踪示波器、信号发生器、交流毫伏表、数字万用表等仪器三、实验内容与步骤1.如下图2所示的电路图图2OTL功率放大电路2.静态工作点的调整分别调整R4和R1滑动变阻器器,使得万用表XMM2和XMM3的数据分别为5---10mA和2.5V,然后测试各级静态工作点填入下表:(注意,信号发生器的大小为0)Ic1=Ic2=7.56mA,U12=2.5Q1Q2Q3Ub0.83V3.22V1.76Uc1.76V5.00V2.51VUe0.15V2.51V0V3.测量最大不失真输出功率理想情况下,最大不失真输出功率,在实验中可通过测量RL两端的电压有效值,来求得实际的。或通过测量流过RL的电流有效值,来求得实际的。如下图3所示。图(a)RL两端的电压有效值图(b)流过RL的电流图3Pom的测量4.测量功率放大器的效率η,其中是直流电源供给的平均功率。理想情况下,。在实验中,可测量电源供给的平均电流IDC,如图3.7-4所示,从而求得Pv=UCC·IdC.。图4电源供给的平均电流IdC在本例中也可用两块瓦特表分别测量电源供给的平均功率Pv及最大不失真输出功率Pom,其图标和面板如图5所示。该图标中有两组端子,左边两个端子为电压输入端子,与所要测试电路并联,右边两个端子为电流输入端子,与所要测试电路串联。图5瓦特表图标和面板5.输入灵敏度输入灵敏度是指输出最大不失真功率时,输入信号Vi之值。6.频率响应的测试实测幅频率特性如下图所示:其中:fL=242Hz,fH=3.45MHz。四、实验分析1.理想情况下,最大不失真功率为,而实测功率只有1.25mW,主要原因是功率三极管的管压降比较高,实际输出最大电压不到1V。2.由于功率输出电路直流工作电流较大,几乎工作在甲类状态,加上三极管管压降较高,电源提供的功率大部分由三极管消耗了,所以实测效率较低。负反馈放大电路的仿真一、实验元件2N2222A三极管(2个)、1mV10KHz正弦电压源、12V直流电压源、10uF电容(5个)、5.11%负反馈电阻、3.05%集电极电阻(2个)、1.501%电阻、1.401%电阻、1.001%负载电阻、1001%电阻、20.01%基极电阻(2个)、10.01%基极电阻(2个)、开关、万用表、示波器等。二、实验原理由于电容对直流量的电抗为无穷大,因而阻容耦合放大电路各级之间的直流通路各不相通,各级的静态工作点相互独立,本次实验采用了实验一的数据,所以可不必重新调节静态工作点。在实验电路中引入电压串联负反馈,将引回的反馈量与输入量相减,从而调整电路的净输入量与输出量,改变电压放大倍数、输入电阻与输出电阻。参数选择:为了使反馈达到深度负反馈,实验中选取了5.1的负反馈电阻,同时为了不会在引入负反馈后出现交流短路的现象,将Re1分为两个部分Re11(100)和Re12(1.4)。根据实验要求,设计的两级阻容耦合放大电路如图1:图1两级阻容耦合放大电路原理图三、电路频率特性测试1、未引入电压串联负反馈前的电路频率特性将电路中的开关J1打开,则此时电路为未引入电压串联负反馈的情况,对电路进行频率仿真,得到如图2的电路频率特性图。图2未引入负反馈的频率特性曲线和通频带指针读数根据上限频率和下限频率的定义——当放大倍数下降到中频的0.707倍对应的频率时,即将读数指针移到幅度为中频的0.707倍处,如图2,读出指针的示数,即下限频率fL=761.6815Hz,上限频率fH=348.2346KHz,因此通频带为(348.2346×—761.6815)Hz。调节信号源的幅度,当信号源幅度为1mV时,输出波形不失真,如图3:图3信号源幅度为1mV时的不失真输出波形继续调节信号源的幅度,当信号源幅度为2mV时,输出波形出现了较为明显的失真,如图4:图4信号源幅度为2mV时出现截止失真的输出波形2、引入电压串联负反馈后的电路频率特性将电路中的开关J1闭合,则此时电路引入电压串联负反馈,对电路进行频率仿真,得到如图5所示的引入电压串联负反馈后的电路频率特性图。图5引入负反馈后的频率特性和通频带指针读数将读数指针移到幅度为中频的0.707倍处,如图5,读出指针的示数,即下限频率fL=33.6584Hz,上限频率fH=4.7302MHz,因此通频带为(4.7302×—33.6584)Hz,明显比未引入负反馈前放宽!再来观察引入电压串联负反馈后,整个电路的最大不失真电压值。当信号源幅度为1mV时,可以被不失真放大,调节信号源幅度至24mV时,输出波形仍未失真,如图6:图6信号源幅度为24mV时的临界不失真输出波形继续增大至25mV时,输出波形开始出现了饱和失真,如图7:图7信号源幅度为25mV时饱和失真的输出波形可见加入负反馈后,电路的动态范围增大,即电路可不失真放大的最大信号幅度增大.四、电路的放大倍数、输入和输出电阻1、测量放大倍数按图8,图9所示连接,分别测出J1打开和闭合时的输入电压Ui、输出电压Uo,放大倍数即为Au=Uo/Ui,从而可分别算出引入负反馈前后的电压放大倍数。a)未引入负反馈的放大倍数打开J1,如图9,测得输入电压Ui≈1mV,输出电压Uo=598.033mV,则Au=Uo/Ui=598.033。图8测量无负反馈时的电压放大倍数的电路图b)引入负反馈后的放大倍数闭合J1,如图9,测得输入电压Ui≈1mV,输出电压Uo=47.551mV,则Au=Uo/Ui=47.551。图9测量有负反馈时的电压放大倍数的电路图可见电压串联负反馈的引入,使得电压放大倍数明显减小,两者相差约12.6倍。2、测量输入电阻按图10,图11所示连接电路,分别测出J1打开和闭合时的输入电压Ui、输入电流Ii,输入电阻即为Ri=Ui/Ii,从而可分别算出引入负反馈前后的输入电阻。a)未引入负反馈的输入电阻打开J1,如图10,测得输入电压Ui≈1mV,输入电流Ii=194.329nA,则Ri=Ui/Ii=5.146。图10测量无负反馈时的输入电阻的电路图b)引入负反馈后的输入电阻闭合J1,如图11,测得输入电压Ui≈1mV,输入电流Ii=154.017nA,则Ri=Ui/Ii=6.493。图11测量有负反馈时的输入电阻的电路图可见电压串联负反馈的引入,使得输入电阻增大。3、测量输出电阻按图12,图13所示连接电路,分别测出J1打开和闭合时的输出电压Uo、输出电流Io,输出电阻即为Ro=Uo/Io,从而可分别算出引入负反馈前后的输出电阻。a)未引入负反馈的输出电阻打开J1,如图12,测得输出电压Uo≈1mV,输出电流Ii=353.57nA,则Ro=Uo/Io=2.828。图12测量无负反馈时的输出电阻的电路图b)引入负反馈后的输出电阻闭合J1,如图13,测得输出电压Uo≈1mV,输出电流Ii=17.159uA,则Ro=Uo/Io=58.278。图13测量有负反馈时的输出电阻的电路图可见电压串联负反馈的引入,使得输出电阻减小。五、AF»1/F的验证按如图14所示连接电路,闭合J1。由于电压串联负反馈电路的AF=Auuf=Uo/Ui、F=Fuu=Uƒ/Uo,因此,需要测量输出电压Uo、输入电压Ui、反馈电压Uƒ。图14AF»1/F的验证电路测得Ui≈1mV,Uo=47.551mV,Uƒ=991.747uF,则AF=Auuf=Uo/Ui=47.551,F=Fuu=Uƒ/Uo=0.02086,1/F=47.939,因此AF»1/F得到验证。六、实验结果分析本实验通过对二级阻容耦合放大电路引入电压串联负反馈前后进行电路仿真,由实验结果可以得出这样的结论:对电路引入电压串联负反馈,会减小其下限频率,增大其上限频率,从而使其通频带变宽;引入电压串联负反馈,会减小电路的电压放大倍数,并增大电路可不失真放大的最大信号幅度,减小非线性失真;引入电压串联负反馈,会增大输入电阻,减小输出电阻。最后通过测量计算验证了AF»1/F的结果,误差E=∣47.551-47.939∣/47.551×100%=0.816%.基于C8051F单片机直流电动机反馈控制系统的设计与研究基于单片机的嵌入式Web服务器的研究MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究基于模糊控制的电阻钎焊单片机温度控制系统的研制基于MCS-51系列单片机的通用控制模块的研究基于单片机实现的供暖系统最佳启停自校正(STR)调节器单片机控制的二级倒立摆系统的研究基于增强型51系列单片机的TCP/IP协议栈的实现基于单片机的蓄电池自动监测系统基于32位嵌入式单片机系统的图像采集与处理技术的研究基于单片机的作物营养诊断专家系统的研究基于单片机的交流伺服电机运动控制系统研究与开发基于单片机的泵管内壁硬度测试仪的研制基于单片机的自动找平控制系统研究基于C8051F040单片机的嵌入式系统开发基于单片机的液压动力系统状态监测仪开发模糊Smith智能控制方法的研究及其单片机实现一种基于单片机的轴快流CO〈,2〉激光器的手持控制面板的研制基于双单片机冲床数控系统的研究基于CYGNAL单片机的在线间歇式浊度仪的研制基于单片机的喷油泵试验台控制器的研制基于单片机的软起动器的研究和设计基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究基于单片机的机电产品控制系统开发基于PIC单片机的智能手机充电器基于单片机的实时内核设计及其应用研究基于单片机的远程抄表系统的设计与研究基于单片机的烟气二氧化硫浓度检测仪的研制基于微型光谱仪的单片机系统单片机系统软件构件开发的技术研究基于单片机的液体点滴速度自动检测仪的研制基于单片机系统的多功能温度测量仪的研制基于PIC单片机的电能采集终端的设计和应用基于单片机的光纤光栅解调仪的研制气压式线性摩擦焊机单片机控制系统的研制基于单片机的数字磁通门传感器基于单片机的旋转变压器-数字转换器的研究基于单片机的光纤Bragg光栅解调系统的研究单片机控制的便携式多功能乳腺治疗仪的研制基于C8051F020单片机的多生理信号检测仪基于单片机的电机运动控制系统设计Pico专用单片机核的可测性设计研究基于MCS-51单片机的热量计基于双单片机的智能遥测微型气象站MCS-51单片机构建机器人的实践研究基于单片机的轮轨力检测基于单片机的GPS定位仪的研究与实现基于单片机的电液伺服控制系统用于单片机系统的MMC卡文件系统研制基于单片机的时控和计数系统性能优化的研究基于单片机和CPLD的粗光栅位移测量系统研究单片机控制的后备式方波UPS提升高职学生单片机应用能力的探究基于单片机控制的自动低频减载装置研究基于单片机控制的水下焊接电源的研究基于单片机的多通道数据采集系统基于uPSD3234单片机的氚表面污染测量仪的研制基于单片机的红外测油仪的研究96系列单片机仿真器研究与设计基于单片机的单晶金刚石刀具刃磨设备的数控改造基于单片机的温度智能控制系统的设计与实现基于MSP430单片机的电梯门机控制器的研制基于单片机的气体测漏仪的研究基于三菱M16C/6N系列单片机的CAN/USB协议转换器基于单片机和DSP的变压器油色谱在线监测技术研究基于单片机的膛壁温度报警系统设计基于AVR单片机的低压无功补偿控制器的设计基于单片机船舶电力推进电机监测系统基于单片机网络的振动信号的采集系统基于单片机的大容量数据存储技术的应用研究基于单片机的叠图机研究与教学方法实践基于单片机嵌入式Web服务器技术的研究及实现基于AT89S52单片机的通用数据采集系统基于单片机的多道脉冲幅度分析仪研究机器人旋转电弧传感角焊缝跟踪单片机控制系统基于单片机的控制系统在PLC虚拟教学实验中的应用研究基于单片机系统的网络通信研究与应用基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究基于单片机的模糊控制器在工业电阻炉上的应用研究基于双单片机冲床数控系统的研究与开发基于Cygnal单片机的μC/OS-Ⅱ的研究基于单片机的一体化智能差示扫描量热仪系统研究基于TCP/IP协议的单片机与Internet互联的研究与实现变频调速液压电梯单片机控制器的研究基于单片机γ-免疫计数器自动换样功能的研究与实现基于单片机的倒立摆控制系统设计与实现单片机嵌入式以太网防盗报警系统基于51单片机的嵌入式Internet系统的设计与实现单片机监测系统在挤压机上的应用MSP430单片机在智能水表系统上的研究与应用基于单片机的嵌入式系统中TCP/IP协议栈的实现与应用单片机在高楼恒压供水系统中的应用基于ATmega16单片机的流量控制器的开发基于MSP430单片机的远程抄表系统及智能网络水表的设计基于MSP430单片机具有数据存储与回放功能的嵌入式电子血压计的设计基于单片机的氨分解率检测系统的研究与开发锅炉的单片机控制系统基于单片机控制的电磁振动式播种控制系统的设计基于单片机技术的WDR-01型聚氨酯导热系数测试仪的研制HYPERLINK"/detail.htm?38823

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论