版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
强度刚度稳定性演示文稿当前第1页\共有62页\编于星期二\7点优选强度刚度稳定性当前第2页\共有62页\编于星期二\7点
梁的弯曲应力与强度计算1梁弯曲时横截面上的正应力
2弯曲切应力
3梁的强度计算
4提高弯曲强度的措施
当前第3页\共有62页\编于星期二\7点
横弯曲和纯弯曲102平面弯曲时梁的横截面上有两个内力分量:弯矩和剪力。例如:AC和DB段。梁在垂直梁轴线的横向力作用下,横截面将同时产生弯矩和剪力。这种弯曲称为横力弯曲简称横弯曲。
例如:CD段。梁在垂直梁轴线的横向力作用下,横截面上只有弯矩没有剪力。称为纯弯曲。
梁弯曲时横截面上的正应力
当前第4页\共有62页\编于星期二\7点中性轴:中性层与梁的横截面的交线。垂直于梁的纵向对称面。
中性轴的概念103设想梁由平行于轴线的众多纵向纤维组成,弯曲时一侧纵向纤维伸长,一侧纵向纤维缩短,总有一层既不伸长也不缩短,称为中性层:当前第5页\共有62页\编于星期二\7点纯弯曲的基本假设:103纯弯曲的基本假设:平面假设:梁的横截面在弯曲变形后仍然保持平面,且与变形后的轴线垂直,只是绕截面的某一轴线转过了一个角度。单向受力假设:各纵向纤维之间相互不挤压。横向线(mm、nn):仍保持为直线,发生了相对转动,仍与弧线垂直。实验观察变形纵向线(aa、bb):变为弧线,凹侧缩短,凸侧伸长。
梁弯曲时横截面上的正应力
当前第6页\共有62页\编于星期二\7点直接导出弯曲正应力梁横截面上的弯矩弯曲正应力公式的推导103-105
弯曲梁的横截面上正应力变形的几何关系物理关系静力关系当前第7页\共有62页\编于星期二\7点
横力弯曲时横截面上的正应力在工程实际中,一般都是横力弯曲,此时,梁的横截面上不但有正应力还有剪应力。因此,梁在纯弯曲时所作的平面假设和各纵向纤维之间无挤压的假设都不成立。
虽然横力弯曲与纯弯曲存在这些差异,但是应用纯弯曲时正应力计算公式来计算横力弯曲时的正应力,所得结果误差不大,足以满足工程中的精度要求。且梁的跨高比
l/h越大,其误差越小。当前第8页\共有62页\编于星期二\7点
弯曲时横截面上的正应力105
MZ:横截面上的弯矩y:所求应力点到中性轴的距离IZ:截面对中性轴的惯性矩当前第9页\共有62页\编于星期二\7点Wz称为抗弯截面系数。它与截面的几何形状有关,单位为m3。P105横力弯曲时,弯矩随截面位置变化。一般情况下,最大正应力发生在弯矩最大的截面上,且离中性轴最远处。即引用记号则当前第10页\共有62页\编于星期二\7点对于宽为
b
,高为
h的矩形截面对于直径为
D的圆形截面对于内外径分别为
d、D的空心圆截面抗弯截面系数106当前第11页\共有62页\编于星期二\7点如果梁的最大工作应力,不超过材料的许用弯曲应力,梁就是安全的。因此,梁弯曲时的正应力强度条件为对于抗拉和抗压强度相等的材料
(如炭钢),只要绝对值最大的正应力不超过许用弯曲应力即可。对于抗拉和抗压不等的材料(如铸铁),则最大的拉应力和最大的压应力分别不超过各自的许用弯曲应力。当前第12页\共有62页\编于星期二\7点
弯曲切应力
1.矩形截面梁的弯曲切应力109y=0,即中性轴上各点处:
即横截面上、下边缘各点处:
当前第13页\共有62页\编于星期二\7点常见梁横截面上的最大剪应力(1)矩形截面梁(2)工字形截面梁(3)圆截面梁h1__腹板的高度d__腹板的宽度(4)空心圆截面梁当前第14页\共有62页\编于星期二\7点
2.工字形截面梁的弯曲切应力111
腹板上的切应力当前第15页\共有62页\编于星期二\7点在y=0处,即中性轴上各点处:
3.圆形截面梁的弯曲剪应力110当前第16页\共有62页\编于星期二\7点
4.薄壁圆环形截面梁的弯曲剪应力110
因为薄壁圆环的壁厚
t远小于平均半径
R,故可以认为剪应力τ
沿壁厚均匀分布,方向与圆周相切。最大剪应力仍发生在中性轴上,其值为当前第17页\共有62页\编于星期二\7点
满足弯曲正应力强度条件的梁,一般都能满足剪应力的强度条件。因而可不对切应力进行强度校核
梁的强度条件1151、梁的正应力强度条件:2、梁的切应力强度条件:当前第18页\共有62页\编于星期二\7点必须进行剪应力的强度校核的情况:
(1)梁的跨度较短,或在支座附近作用较大的载荷;以致梁的弯矩较小,而剪力很大。
(2)焊接或铆接的工字梁,如果腹板较薄而截面高度很大,以致厚度与高度的比值小于型钢的相应比值,这时,对腹板应进行剪应力强度校核。
(3)经焊接、铆接或胶合而成的组合梁,一般需对焊缝、铆钉或胶合面进行剪应力强度校核。当前第19页\共有62页\编于星期二\7点按强度条件设计梁时,强度条件可解决三方面问题:(1)强度校核;(2)设计截面尺寸;(3)计算许可载荷。
当前第20页\共有62页\编于星期二\7点按强度条件设计梁时,主要是根据梁的弯曲正应力强度条件由上式可见,要提高梁的弯曲强度,即降低最大正应力,可以从两个方面来考虑,一是合理安排梁的受力情况,以降低最大弯矩
Mmax的数值;二是采用合理的截面形状,以提高抗弯截面系数W的数值。充分利用材料的性能。
提高弯曲强度的措施119
当前第21页\共有62页\编于星期二\7点提高弯曲强度的措施
一、
合理安排梁的受力情况合理安排作用在梁上的荷载,可以降低梁的最大弯矩。从而提高梁的强度
1、使集中力分散当前第22页\共有62页\编于星期二\7点2、减小跨度当前第23页\共有62页\编于星期二\7点二、
合理选择截面当弯矩值一定时,横截面上的最大正应力与弯曲截面系数成反比,即弯曲截面系数W,越大越好。另一方面,横截面面积越小,梁使用的材料越少,自重越轻,即横截面面积A,越小越好。因此,合理的横截面形状应该是截面面积
A较小,而弯曲截面系数
W较大。我们可以用比值来衡量截面形状的合理性。所以,在截面面积一定时,环形截面比圆形截面合理,矩形截面比圆形截面合理,矩形截面竖放比平放合理,工字形截面比矩形截面合理。当前第24页\共有62页\编于星期二\7点
对抗拉和抗压强度相等的材料制成的梁,宜采用中性轴为其对称轴的截面,例如,工字形、矩形、圆形和环形截面等。另外,截面是否合理,还应考虑材料的特性。当前第25页\共有62页\编于星期二\7点
对抗拉和抗压强度不相等的材料制成的梁,由于抗压能力强于抗拉能力,宜采用中性轴偏于受拉一侧的截面。
对这类截面,应使最大拉应力和最大压应力同时接近材料的许用拉应力和许用压应力。当前第26页\共有62页\编于星期二\7点三、合理设计梁的外形(等强度梁)在一般情况下,梁的弯矩沿轴线是变化的。因此,在按最大弯矩所设计的等截面梁中,除最大弯矩所在的截面外,其余截面的材料强度均未能得到充分利用。为了减轻梁的自重和节省材料,常常根据弯矩的变化情况,将梁设计成变截面的。在弯矩较大处,采用较大的截面;在弯矩较小处,采用较小的截面。这种截面沿轴线变化的梁,称为变截面梁。例如:阶梯轴、鱼腹梁等。当前第27页\共有62页\编于星期二\7点从弯曲强度考虑,理想的变截面梁应该使所有截面上的最大弯曲正应力均相同,且等于许用应力,即这种梁称为等强度梁。当前第28页\共有62页\编于星期二\7点2、梁的刚度计算弯曲变形与刚度1、弯曲变形的基本概念3、提高梁刚度的措施当前第29页\共有62页\编于星期二\7点弯曲变形问题1261、弯曲变形的基本概念工程中梁的变形和位移都是弹性的,但设计中,对于结构或构件的弹性变形和位移变形都有一定的限制。弹性变形和位移过大都会使结构或构件丧失正常功能,即发生刚度失效。当前第30页\共有62页\编于星期二\7点
弯曲构件除了要满足强度条件外,还需满足刚度条件。如车床主轴的变形过大会引起加工零件的误差。
车间内的吊车梁若变形过大,将使吊车梁上的小车行走困难,出现爬坡现象。当前第31页\共有62页\编于星期二\7点弯曲变形问题1、弯曲变形的基本概念工程设计中还会有另外一种变形问题,所考虑的不是限制构件的弹性变形和位移,而是希望在构件不发生强度失效的前提下,尽量产生较大的弹性变形。当前第32页\共有62页\编于星期二\7点
汽车车架处的钢板弹簧应有较大的变形,才能更好地缓冲减振。当前第33页\共有62页\编于星期二\7点PAB梁的位移yx挠曲线:在弹性范围内加载,梁的轴线在弯曲后将变成一连续光滑曲线,这条光滑曲线叫做挠曲线变形后梁的轴线。梁在弯曲变形后,横截面位置发生改变,称为位移。1、挠度ω:横截面形心沿垂直于轴线方向的位移。x2.转角θ:变形后的横截面相对于变形前位置绕中性轴转过的角度。w=w(x)称为挠度方程。3、轴向位移:梁变形后,横截面形心将产生水平方向位移,称为轴向位移或水平位移,用u表示。但在小变形条件下,通常不考虑。挠曲线126-127当前第34页\共有62页\编于星期二\7点
梁的变形计算·-----积分法127挠曲线近似微分方程:C、D——积分常数;由边界条件和连续性条件确定。若为等截面直梁,其抗弯刚度EI为一常量,上式可改写成:上式积分一次得转角方程:再积分一次,得挠度方程:35当前第35页\共有62页\编于星期二\7点条件:由于梁的变形微小,梁变形后其跨长的改变可略去不计,且梁的材料在线弹性范围内工作,因而梁的挠度和转角均与作用在梁上的载荷成线性关系。
在这种情况下,梁在几项载荷(如集中力、集中力偶或分布力)同时作用下某一横截面的挠度和转角,就分别等于每项载荷单独作用下该截面的挠度和转角的叠加,此即为叠加原理。36
梁的变形计算·-----叠加法P133当前第36页\共有62页\编于星期二\7点
梁的刚度计算1362
设计截面3
确定许可载荷
1刚度校核一、刚度条件:二、应用三种刚度计算:当前第37页\共有62页\编于星期二\7点提高梁的刚度的措施138提高梁的刚度主要指减小梁的弹性位移。而弹性位移不仅和荷载有关,还和杆长和梁的弯曲刚度EI有关,以P132表10-1中2悬臂梁为例,可以通过以下措施提高梁的刚度当前第38页\共有62页\编于星期二\7点提高梁的刚度的措施提高梁的刚度主要指减小梁的弹性位移。而弹性位移不仅和荷载有关,还和杆长和梁的弯曲刚度EI有关,以P132表10-1中2悬臂梁为例,可以通过以下措施提高梁的刚度当前第39页\共有62页\编于星期二\7点提高梁的刚度的措施1、减小梁的跨度,当梁的长度无法减小时,增加中间支座;2、选择合理的截面增加惯性矩I3、选用弹性模量E较高的材料。当前第40页\共有62页\编于星期二\7点41压杆稳定182概念临界力和欧拉公式压杆的稳定计算提高压杆稳定性的措施当前第41页\共有62页\编于星期二\7点压杆稳定的概念9-1目录构件的承载能力①强度②刚度③稳定性
工程中有些构件具有足够的强度、刚度,却不一定能安全可靠地工作。42当前第42页\共有62页\编于星期二\7点
压杆稳定的概念
当F小于某一临界值Fcr,撤去轴向力后,杆的轴线将恢复其原来的直线平衡形态(图b),则称原来的平衡状态的是稳定平衡。FFQ(a)(b)当前第43页\共有62页\编于星期二\7点当F增大到一定的临界值Fcr,撤去轴向力后,杆的轴线将保持弯曲的平衡形态,而不再恢复其原来的直线平衡形态(图c),则称原来的平衡状态的是不稳定平衡。FFQ(a)(b)(c)当前第44页\共有62页\编于星期二\7点目录稳定的平衡状态和不稳定状态之间的分界点称为临界点,临界点对应的载荷称为临界荷载。用Fpcr表示。压杆从直线平衡状态转变为其他形式平衡状态的过程称为称为丧失稳定,简称失稳,也称屈曲,屈曲失效具有突发性,在设计时需要认真考虑。FFQ(a)(b)(c)当前第45页\共有62页\编于星期二\7点1、两端铰支的压杆
图示坐标系,考察微弯状态下任意一段压杆的平衡(图b),杆件横截面上的弯矩为:
根据挠曲线近似微分方程,有
取临界荷载当前第46页\共有62页\编于星期二\7点解微分方程得到通解为
C1和C2为待定常数,根据压杆的约束边界条件来确定,在两端铰支的情况下,边界条件为当前第47页\共有62页\编于星期二\7点若C1=0,表明杆为直线,这与压杆处于微弯平衡状态不符。当前第48页\共有62页\编于星期二\7点
上式表明,使杆件保持为曲线平衡的压力,理论上是多值的。在这些压力中,使杆件保持为曲线平衡的最小压力,才是临界压力。
取n=1
两端铰支压杆的欧拉公式E为压杆材料的弹性模量I为压杆横截面的形心主惯性矩
184当前第49页\共有62页\编于星期二\7点其它刚性支承情况下的压杆184ml为有效长度,m为长度系数,m与压杆两端的支承情况有关。其数值为两端铰支
m
=1一端固定一端自由
m
=2两端固定
m
=0.5一端固定一端铰支
m
=0.7欧拉公式当前第50页\共有62页\编于星期二\7点一端自由,一端固定
=2.0两端固定=0.5一端铰支,一端固定
=0.7两端铰支
=1.0当前第51页\共有62页\编于星期二\7点则引入压杆长细比或柔度式中,
为压杆横截面对中性轴的惯性半径。压杆的临界应力及临界应力总图一、细长压杆的临界应力185当前第52页\共有62页\编于星期二\7点Oppcr欧拉临界应力曲线
通常称≥p的压杆为大柔度杆或细长杆。欧拉公式的应用范围:
欧拉公式只有材料在线弹性范围内才成立,这就要求在临界荷载作用下,压杆在直线平衡状态时,其横截面上的正应力小于或等于比例极限,即只有cr≤p时,欧拉公式才能适用。
当前第53页\共有62页\编于星期二\7点
如果压杆的柔度
p,则临界应力cr大于材料的极限应力p,此时欧拉公式不再适用。对于这类压杆,通常采用以试验结果为基础的经验公式来计算其临界应力。1)
s≤p 中柔度杆或中长杆公式
式中,a和b是与材料力学性能有关的常数,一些常用材料的a和b值见下表。二、中长杆和粗短杆的临界应力计算1862)
<s的压杆称为小柔度杆或短粗杆,属强度破坏,其临界应力为极限应力。当前第54页\共有62页\编于星期二\7点一些常用材料的a、b、p、s值材料a(MPa)b(MPa)psQ235钢3041.1210061.435号钢4602.571006045号钢4692.6210060硅钢5893.8210060铬铝
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度游乐场员工聘用协议
- 六年级数学下册 比例单元检测试卷(人教版)
- 创新教育模式提升员工学习效果考核试卷
- 《新世纪东北作家的城市书写研究》
- 《鄂西南传统村落保护性设计策略研究》
- 《我国特大型智慧城市建设路径比较研究》
- 供应链安全数据加密技术的选择与应用经验分享考核试卷
- 2024至2030年中国弹簧拉力器行业投资前景及策略咨询研究报告
- 现河采油厂直接作业环节安全管理培训考核试卷
- 危险品仓储毒剧物管理考核试卷
- 信息科技大单元教学设计之八年级第三单元简单物联功能实践
- 【团体标准】TDZJN 77-2022 锂离子电池产品碳足迹评价导则
- 期中模拟卷(含答案)2024-2025学年浙教版七年级数学上册
- 2024年江苏苏州市(12345)便民服务中心招聘座席代表人员高频难、易错点500题模拟试题附带答案详解
- 2024年湖南省长沙市中考历史试卷真题(含答案解析)
- 石料仓储合同范本
- 第1-4单元期中核心素质检测卷(试题)-2024-2025学年数学三年级上册北师大版
- 摩托车维修技术考核试卷
- 6 我的家庭贡献与责任(教学设计) 部编版道德与法治四年级上册
- 期中测试题-2024-2025学年道德与法治六年级上册统编版
- 《珍爱生命拒绝毒品》主题班会课件
评论
0/150
提交评论