




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市省实验中学2021年高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数中,在区间(0,+∞)上存在最小值的是(
)A.y=(x﹣1)2 B. C.y=2x D.y=log2x参考答案:A【考点】函数的值域.【专题】函数的性质及应用.【分析】先判断函数的单调性,再判断函数能否取到最值的情况,从而得出结论.【解答】解:A、函数y=(x﹣1)2是开口向上的抛物线,又对称轴为x=1,故当x=1时函数取最小值,故选A;而B、C、D中的三个函数在区间(0,+∞)上都为增函数,而区间(0,+∞)为开区间,自变量取不到左端点,故函数都无最小值;故选:A.【点评】本题主要考查函数值域的求法,要求函数的值域应先判断函数的单调性,再看函数是否能取到最值.2.函数的图象可能是(
)
参考答案:D略3.函数的一个正零点的区间可能是
(A)
(B)
(C)
(D)参考答案:B4.函数的图象是下列图象中的
(
)参考答案:C5.集合,则A.
B.
C.
D.
参考答案:C略6.若向量,,,则用表示为(
)A. B.C. D.参考答案:A【分析】设,可得,解方程即可得结果.【详解】设,因为向量,,,所以,,解得所以,故选A7.函数y=sin(-2x)的单调增区间是(
)A.[kπ-,kπ+]
(k∈Z)
B.
[kπ+,kπ+]
(k∈Z)C.[kπ-,kπ+]
(k∈Z)
D.
[kπ+,kπ+]
(k∈Z)参考答案:D略8.已知函数f(x)=x+tanx+1,若f(a)=2,则f(﹣a)的值为()A.0 B.﹣1 C.﹣2 D.3参考答案:A【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】先求出a+tana=1,由此能求出f(﹣a)的值.【解答】解:∵函数f(x)=x+tanx+1,f(a)=2,∴f(a)=a+tana+1=2,∴a+tana=1,∴f(﹣a)=﹣a﹣tana+1=﹣1+1=0.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.9.若变量x,y满足约束条件,则的最大值为(
)A.1
B.5
C.3
D.4参考答案:C10.设,,参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.下列命题中正确的序号为
。(你认为正确的都写出来)①若是第一象限的角,则是增函数;②在中,若,则;③,且,则;④的一条对称轴为。参考答案:②③④略12.已知函数若存在四个不同的实数a,b,c,d,使得,记S的取值范围是
.参考答案:[0,4)的图象为:由图可知,,且,所以,所以取值范围为[0,4)。
13.设等差数列{an}的前n项和为Sn,Sm﹣1=﹣2,Sm=0,Sm+1=3,则正整数m的值为.参考答案:5【考点】等差数列的性质.【分析】由题意可得am和am+1的值,进而可得公差d,由通项公式和求和公式可得a1和m的方程组,解方程组可得所求.【解答】解:由题意可得am=Sm﹣Sm﹣1=0﹣(﹣2)=2,am+1=Sm+1﹣Sm=3﹣0=3,∴等差数列{an}的公差d=am+1﹣am=3﹣2=1,由通项公式可得am=a1+(m﹣1)d,代入数据可得2=a1+m﹣1,①再由求和公式可得Sm=ma1+d,代入数据可得0=ma1+,②联立①②可解得m=5故答案为:514.已知函数f(x)=lg(-2x)+1,则f(lg2)+f(lg)=.参考答案:2【考点】对数的运算性质.【分析】利用f(﹣x)+f(x)=2即可得出.【解答】解:f(﹣x)++lg+1=lg1+2=2,则=f(lg2)+f(﹣lg2)=2.故答案为:2.15.给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上变动.若其中,则的最大值是________.
参考答案:16.如图,函数y=2sin(+),x∈R,(其中0≤≤)的图象与y轴交于点(0,1).设P是图象上的最高点,M、N是图象与x轴的交点,=__________.参考答案:;略17.过点(0,1)且与直线2x﹣y=0垂直的直线方程的一般式是.参考答案:x+2y﹣2=0【考点】直线的一般式方程与直线的垂直关系.【分析】与直线2x﹣y=0垂直的直线方程的斜率k=﹣,由此能用点斜式方程能求出过点(0,1)且与直线2x﹣y=0垂直的直线方程.【解答】解:∵与直线2x﹣y=0垂直的直线方程的斜率k=﹣,∴过点(0,1)且与直线2x﹣y=0垂直的直线方程为:y﹣1=﹣,整理,得:x+2y﹣2=0.故答案为:x+2y﹣2=0.【点评】本题考查直线方程的求法,是基础题,解题时要认真审题,注意直线间位置关系的灵活运用.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)函数f(x)=3cos2+sinωx﹣(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为等边三角形.将函数f(x)的图象上各点的横坐标变为原来的π倍,将所得图象向右平移个单位,再向上平移1个单位,得到函数y=g(x)的图象(1)求函数g(x)的解析式及函数g(x)的对称中心.(2)若3sin2﹣m≥m+2对任意x∈恒成立,求实数m的取值范围.参考答案:考点: 三角函数中的恒等变换应用;正弦函数的图象.专题: 函数的性质及应用;三角函数的求值;三角函数的图像与性质.分析: (1)根据已知先化简求出f(x)的解析式,从而根据正弦函数图象变换规律可求函数g(x)的解析式及函数g(x)的对称中心.(2)据已知有m≤,设t=3sin+1,则根据函数y=(t﹣﹣2)在t∈上是增函数,可解得m≤﹣2.解答: (1)f(x)=sin(),T=4,∴,∴f(x)=sin(x+),g(x)=sin+1=sin+1,∵令=kπ,k∈Z,∴x=2kπ,k∈Z,对称中心为(2kπ,1),k∈Z,(2)3sin2﹣3msin﹣m﹣2≥0,设sin∈,有m≤,设t=3sin+1,t∈,则sin=,y===(t﹣﹣2)在t∈上是增函数,∴t=1时,ymin=﹣2,∴m≤﹣2.点评: 本题主要考察了三角函数中的恒等变换应用,三角函数的图象与性质,函数值域的确定,考查了转化思想,属于中档题.19.(12分)已知函数,且.(1)求;(2)判断函数的单调性,并用定义给出证明;(3)若关于的不等式在上恒成立,求实数的取值范围.参考答案:a=-1
b=0
(-,0)增(0,+)
m20.已知幂函数满足.(1)求函数的解析式;(2)若函数,是否存在实数m使得的最小值为0?若存在,求出m的值;若不存在,说明理由;(3)若函数,是否存在实数,使函数在上的值域为?若存在,求出实数n的取值范围;若不存在,说明理由.参考答案:(1);(2)存在使得的最小值为0;(3).试题分析:(1)根据幂函数是幂函数,可得,求解的值,即可得到函数的解析式;(2)由函数,利用换元法转化为二次函数问题,求解其最小值,即可求解实数的取值范围;(3)由函数,求解的解析式,判断其单调性,根据在上的值域为,转化为方程有解问题,即可求解的取值范围.试题解析:(1)∵为幂函数,∴,∴或.当时,在上单调递减,故不符合题意.当时,在上单调递增,故,符合题意.∴.(2),令.∵,∴,∴,.当时,时,有最小值,∴,.②当时,时,有最小值.∴,(舍).③当时,时,有最小值,∴,(舍).∴综上.(3),易知在定义域上单调递减,∴,即,令,,则,,∴,∴,∴.∵,∴,∴,∴,∴.∵,∴,∴,∴.∴.点睛:本题主要考查了幂函数的解析式,函数最值的求解,方程与不等式的性质等知识点的综合应用,其中熟记一元二次函数的图象与性质是解答的关键,试题综合性强,属于难题,考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识.21.已知数列{an}的前n项和是Sn,满足.(1)求数列{an}的通项an及前n项和Sn;(2)若数列{bn}满足,求数列{bn}的前n项和Tn;(3)对(2)中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邵阳市重点中学2024-2025学年初三5月毕业班模拟考试数学试题含解析
- 江苏省盐城市响水实验、一中学2025届初三下学期零诊模拟生物试题含解析
- 廊坊卫生职业学院《成衣制作工艺》2023-2024学年第二学期期末试卷
- 江西师范大学科学技术学院《prote软件设计》2023-2024学年第二学期期末试卷
- 延寿县2025届数学四年级第二学期期末质量检测模拟试题含解析
- 天府新区航空旅游职业学院《欧美设计规范释义一双语》2023-2024学年第二学期期末试卷
- 天津石油职业技术学院《珠宝专业英语》2023-2024学年第二学期期末试卷
- 塔里木职业技术学院《测井资料解释课程设计》2023-2024学年第一学期期末试卷
- 辽宁税务高等专科学校《影像诊断学》2023-2024学年第二学期期末试卷
- 文山壮族苗族自治州马关县2024-2025学年数学三下期末综合测试模拟试题含解析
- 美国学生阅读技能训练
- 网络安全服务项目服务质量保障措施(实施方案)
- 生产加工型小微企业安全管理考试(含答案)
- 青少年科技创新比赛深度分析
- 世界近代武器革新图鉴(1722-1900)英国篇
- 安标受控件采购管理制度
- 亚低温的治疗与护理
- 危险化学品企业设备完整性 第2部分 技术实施指南 编制说明
- 防高坠自查自纠台账
- GB/T 4437.1-2023铝及铝合金热挤压管第1部分:无缝圆管
- 市政工程消耗量定额 zya1-31-2015
评论
0/150
提交评论