2022-2023学年湖南省怀化市黔城中学高一数学理下学期期末试卷含解析_第1页
2022-2023学年湖南省怀化市黔城中学高一数学理下学期期末试卷含解析_第2页
2022-2023学年湖南省怀化市黔城中学高一数学理下学期期末试卷含解析_第3页
2022-2023学年湖南省怀化市黔城中学高一数学理下学期期末试卷含解析_第4页
2022-2023学年湖南省怀化市黔城中学高一数学理下学期期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年湖南省怀化市黔城中学高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,那么的值为

)A、

B、C、

D、参考答案:D2.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为(

)A.120 B.200 C.100 D.150参考答案:A【分析】由样本容量、总容量以及个体入样可能性三者之间的关系,列等式求出的值.【详解】由题意可得,解得,故选:A.【点睛】本题考查抽样概念的理解,了解样本容量、总体容量以及个体入样可能性三者之间的关系是解题的关键,考查计算能力,属于基础题.3.已知集合A={﹣1,0,1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∩B=()A.{1} B.{0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}参考答案:B【考点】交集及其运算.【分析】直接解一元二次不等式化简集合B,再由交集运算性质得答案.【解答】解:∵A={﹣1,0,1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z}={0,1},∴A∩B={﹣1,0,1,2,3}∩{0,1}={0,1}.故选:B.4.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有<0.则() A.f(0.76)<f(log0.76)<f(log60.5)B.f(0.76)<f(60.5)<f(log0.76) C.f(log0.76)<f(0.76)<f(60.5)D.f(log0.76)<f(60.5)<f(0.76)参考答案:D【考点】奇偶性与单调性的综合. 【专题】综合题;转化思想;综合法;函数的性质及应用. 【分析】先由奇偶性将问题转化到[0,+∞),再由函数在区间上的单调性比较. 【解答】解:∵任意的x1,x2∈[0,+∞)(x1≠x2),有<0 ∴f(x)在[0,+∞)上是减函数, 又∵0.76<60.5<|log0.76| ∴, 故选:D 【点评】本题主要考查用奇偶性转化区间和单调性比较大小,在比较大小中,用单调性的较多,还有的通过中间桥梁来实现的,如通过正负和1来解决. 5.函数的增区间为A.B.C.D.参考答案:A6.函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是

()A.a>1,b<0

B.0<a<1,b>0C.a>1,b>0

D.0<a<1,b<0参考答案:D7.函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1) B.(1,+∞) C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)参考答案:C【考点】函数的定义域及其求法.【分析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.8.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c参考答案:D【考点】对数的运算性质;对数函数的单调性与特殊点;不等式比较大小.【分析】因为a=log54<log55=1,b=(log53)2<(log55)2,c=log45>log44=1,所以c最大,排除A、B;又因为a、b∈(0,1),所以a>b,排除C.【解答】解:∵a=log54<log55=1,b=(log53)2<(log55)2,c=log45>log44=1,∴c最大,排除A、B;又因为a、b∈(0,1),所以a>b,故选D.9.函数的零点所在的一个区间为(

)A、

B、

C、

D、参考答案:B10.已知偶函数f(x)在区间(-∞,0]单调减少,则满足f(2x-1)<f()的x的取值范围是(A)

A.(,)

B.[,)

C.(,)

D.[,)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.(5分)2log510+log50.25=

.参考答案:2考点: 对数的运算性质.专题: 计算题.分析: 根据对数运算法则nlogab=logabn和logaM+logaN=loga(MN)进行求解可直接得到答案.解答: ∵2log510+log50.25=log5100+log50.25=log525=2故答案为:2.点评: 本题主要考查对数的运算法则,解题的关键是对对数运算法则的熟练程度,属于基础题.12.如图所示,正方体的棱长为1,分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:(1)平面平面;(2)当且仅当时,四边形的面积最小;(3)四边形周长,,则是偶函数;(4)四棱锥的体积为常函数;以上命题中真命题的序号为_____________.

参考答案:(1)(2)(3)(4)略13.已知定义在R上的奇函数f(x),当x>0时,,那么x<0时,f(x)=

___参考答案:略14.已知平面上的向量、满足,=2,设向量,则的最小值是.参考答案:2【考点】向量的模.【分析】利用勾股定理判断出PA,与PB垂直,得到它们的数量积为0;求的平方,求出范围.【解答】解:,∴∴=0∴=3≥4∴故答案为2.15.已知点是三角形的重心,则=

.参考答案:略16.设,过定点A的动直线与过定点B的动直线交于点,则的取值范围为

.参考答案:

17.(4分)有一个几何体的三视图及其尺寸如下(单位:cm):则该几何体的体积为

cm3;表面积为

cm2.参考答案:54π;54π.考点: 由三视图求面积、体积.专题: 计算题.分析: 根据三视图复原的几何体,推出几何体是圆柱,根据三视图的数据即可求出几何体的体积与表面积.解答: 三视图复原的几何体是底面半径为3,高为6的圆柱,[来源:学。科。网]所以几何体的体积是:π×32×6=54π(cm3);几何体的表面积为:2×32π+6π×6=54π(cm2);故答案为:54π;54π.点评: 本题是基础题,考查三视图与几何体的关系,正确利用几何体的三视图是解题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知二次函数的最小值为1,且.(1)求的解析式;(2)若在区间上不单调,求实数的取值范围;(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围.参考答案:解:(1)由已知,设,由,得,故。(2)要使函数不单调,则,则。(3)由已知,即,化简得,

设,则只要,而,得。略19.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是[70,80),[80,90),[90,100),[100,110),[110,120).(1)求图中m的值;(2)根据频率分布直方图,估计这200名学生的平均分;(3)若这200名学生的数学成绩中,某些分数段的人数x与英语成绩相应分数段的人数y之比如下表所示,求英语成绩在[90,120)的人数.分数段[70,80)[80,90)[90,100)[100,110)[110,120)1:22:16:51:21:1

参考答案:(1)(2)93分(3)140人【分析】(1)在频率分布直方图中所有小矩形的面积之和为1,由此可得;(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即为估计平均数;(3)求出这200名学生的数学成绩在,,的人数,然后计算出各分数段的英语人数即可.【详解】(1)由,解得.(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即估计平均数为.(3)由频率分布直方图可求出这200名学生的数学成绩在,,的分别有60人,40人,10人,按照表中给的比例,则英语成绩在,,的分别有50人,80人,10人,所以英语成绩在的有140人.【点睛】本题考查频率分布直方图,解题时注意频率分布直方图中所有小矩形的面积之和为1,估值时常用小矩形底边中点横坐标作为此矩形的估值进行计算.20.已知锐角满足,若,(1)求的表达式;(2)当时,求(1)中函数的最大值.参考答案:在时是增函数

在上是减函数…14分当时,…………16分21.已知定义在R的函数f(x)满足以下条件:①对任意实数x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);②当x>0时,f(x)>0;③f(1)=1.(1)求f(2),f(0)的值;(2)若f(2x)﹣a≥af(x)﹣5对任意x恒成立,求a的取值范围;(3)求不等式的解集.参考答案:【考点】抽象函数及其应用.【分析】(1)令x=y=1可得f(2)=3;令x=y=0可得f(0)=0或f(0)=﹣1,令x=1,y=0可得f(1)=f(1)f(0)+f(0)+f(1),若f(0)=﹣1,则f(1)=f(0)=﹣1与已知矛盾;(2)f(2x)﹣a≥af(x)﹣5对任意x恒成立?f2(x)+2f(x)﹣a≥af(x)﹣5对任意x恒成立,先探讨f(x)=t的取值范围t∈(﹣1,+∞),原不等式等价于:t2+2t﹣a≥at﹣5在t∈(﹣1,+∞)恒成立,(3)(3)f(f(x))≥?[1+f(x+1)]?f(f(x))≥7﹣f(x+1)?f(x+1)??[1+f(x+1)]?f(f(x))≥7﹣f(x+1)?f(x+1)+f(x+1)?f(f(x))+f(f(x))≥7?f(x+1+f(x))≥7.再证明函数y=f(x)在R上单调递增,原不等式转化为x+1+f(x)≥3令F(x)=x+1+f(x),F(x)在R上单调递增F(x)≥F(3)?x≥1,【解答】解:(1)令x=y=1可得f(2)=f(1)f(1)+2f(1)=3,令x=y=0可得f(0)=f(0)f(0)+2f(0),则f(0)=0或f(0)=﹣1,令x=1,y=0可得f(1)=f(1)f(0)+f(0)+f(1),若f(0)=﹣1,则f(1)=f(0)=﹣1与已知矛盾,∴f(0)=0;(2)f(2x)﹣a≥af(x)﹣5对任意x恒成立?f2(x)+2f(x)﹣a≥af(x)﹣5对任意x恒成立,令f(x)=t,以下探讨f(x)=t的取值范围.令y=﹣x可得f(0)=f(﹣x)f(x)+f(x)+f(﹣x)?f(x)=,当x<0时,f﹣x)>0,则﹣1<f(x)=<0,∴x∈R时,f(x)=t∈(﹣1,+∞).原不等式等价于:t2+2t﹣a≥at﹣5在t∈(﹣1,+∞)恒成立,即tt2+2t+5≥(t+1)a?a≤.g(t)=,当t=1时取等号.∴a≤4.(3)由(2)可得f(x)∈(﹣1+∞),f(x+1)∈(﹣1+∞),f(f(x))≥?[1+f(x+1)]?f(f(x))≥7﹣f(x+1)?f(x+1)??[1+f(x+1)]?f(f(x))≥7﹣f(x+1)?f(x+1)+f(x+1)?f(f(x))+f(f(x))≥7?f(x+1+f(x))≥7.下面证明y=f(x)的单调性:任取x1,x2∈R,且x1>x2,?f(x1﹣x2)>0,f(x2)>﹣1则f(x1)﹣f(x2)=f(x1﹣x2+x2)﹣f(x2)=f(x1﹣x2)f(x2)+f(x1﹣x2)=f(x1﹣x2)[f(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论