2023年广州市番禺区高考数学一模试卷(文科)含答案解析高考数学要点分类汇编_第1页
2023年广州市番禺区高考数学一模试卷(文科)含答案解析高考数学要点分类汇编_第2页
2023年广州市番禺区高考数学一模试卷(文科)含答案解析高考数学要点分类汇编_第3页
2023年广州市番禺区高考数学一模试卷(文科)含答案解析高考数学要点分类汇编_第4页
2023年广州市番禺区高考数学一模试卷(文科)含答案解析高考数学要点分类汇编_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2017年广东省广州市番禺区高考数学一模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.设集合S={x|x<﹣5或x>5},T={x|﹣7<x<3},则S∩T=()A.{x|﹣7<x<﹣5} B.{x|3<x<5} C.{x|﹣5<x<3} D.{{x|﹣7<x<5}2.在区间[﹣1,m]上随机选取一个数x,若x≤1的概率为,则实数m的值为()A.2 B.3 C.4 D.53.设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.34.已知双曲线﹣=1的左、右焦点分别为F1、F2,且F2为抛物线y2=2px的焦点,设P为两曲线的一个公共点,则△PF1F2的面积为()A.18 B.18 C.36 D.365.若实数x、y满足,则z=2x﹣y的最大值为()A. B. C.1 D.26.已知命题p:∀x∈R,x2﹣2xsinθ+1≥0;命题q:∃α,β∈R,sin(α+β)≤sinα+sinβ,则下列命题中的真命题为()A.(¬p)∧q B.¬(p∧q) C.(¬p)∨q D.p∧(¬q)7.若函数f(x)为区间D上的凸函数,则对于D上的任意n个值x1、x2、…、xn,总有f(x1)+f(x2)+…+f(xn)≤nf(),现已知函数f(x)=sinx在[0,]上是凸函数,则在锐角△ABC中,sinA+sinB+sinC的最大值为()A. B. C. D.8.三棱柱ABC﹣A1B1C1的侧棱垂直于底面,且AB⊥BC,AB=BC=AA1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为()A.48π B.32π C.12π D.8π9.执行如图所示的程序框图,若x∈[a,b],y∈[0,4],则b﹣a的最小值为()A.2 B.3 C.4 D.510.已知向量、、满足=+,||=2,||=1,E、F分别是线段BC、CD的中点,若•=﹣,则向量与的夹角为()A. B. C. D.11.一块边长为6cm的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正三棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为()A. B. C. D.12.已知椭圆E:+=1的一个顶点为C(0,﹣2),直线l与椭圆E交于A、B两点,若E的左焦点为△ABC的重心,则直线l的方程为()A.6x﹣5y﹣14=0 B.6x﹣5y+14=0 C.6x+5y+14=0 D.6x+5y﹣14=0二、填空题(共4小题,每小题5分,满分20分)13.若复数a+i是纯虚数,则实数a=.14.曲线y=sinx+1在点(0,1)处的切线方程为.15.已知f(x)是定义在R上的奇函数,f(x)满足f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x,则f(37.5)等于.16.函数f(x)=sinωx+cosωx+1(ω>0)的最小正周期为π,当x∈[m,n]时,f(x)至少有5个零点,则n﹣m的最小值为.三、解答题(共6小题,满分70分)17.在△ABC中,内角A、B、C所对的边分别是a、b、c,已知A=60°,b=5,c=4.(1)求a;(2)求sinBsinC的值.18.设等差数列{an}的公差为d,且2a1=d,2an=a2n﹣1.(1)求数列{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Sn.19.某市为了解各校(同学)课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,得到如图所示分布图:(Ⅰ)试确定图中实数a与b的值;(Ⅱ)若将等级A、B、C、D依次按照90分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;(Ⅲ)从两校获得A等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.20.如图,三棱锥P﹣ABC中,PA=PC,底面ABC为正三角形.(Ⅰ)证明:AC⊥PB;(Ⅱ)若平面PAC⊥平面ABC,AB=2,PA⊥PC,求三棱锥P﹣ABC的体积.21.已知圆C:(x﹣6)2+y2=20,直线l:y=kx与圆C交于不同的两点A、B.(Ⅰ)求实数k的取值范围;(Ⅱ)若=2,求直线l的方程.22.已知函数f(x)=alnx+x2﹣x,其中a∈R.(Ⅰ)若a<0,讨论f(x)的单调性;(Ⅱ)当x≥1时,f(x)≥0恒成立,求a的取值范围.

2017年广东省广州市番禺区高考数学一模试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.设集合S={x|x<﹣5或x>5},T={x|﹣7<x<3},则S∩T=()A.{x|﹣7<x<﹣5} B.{x|3<x<5} C.{x|﹣5<x<3} D.{{x|﹣7<x<5}【考点】交集及其运算.【分析】利用交集定义和不等式性质求解.【解答】解:∵集合S={x|x<﹣5或x>5},T={x|﹣7<x<3},∴S∩T={x|﹣7<x<﹣5}.故选:A.2.在区间[﹣1,m]上随机选取一个数x,若x≤1的概率为,则实数m的值为()A.2 B.3 C.4 D.5【考点】几何概型.【分析】利用几何概型的公式,利用区间长度的比值得到关于m的等式解之.【解答】解:由题意x≤1的概率为,则,解得m=4;故选C.3.设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.3【考点】分段函数的解析式求法及其图象的作法.【分析】考查对分段函数的理解程度,f(2)=log3(22﹣1)=1,所以f(f(2))=f(1)=2e1﹣1=2.【解答】解:f(f(2))=f(log3(22﹣1))=f(1)=2e1﹣1=2,故选C.4.已知双曲线﹣=1的左、右焦点分别为F1、F2,且F2为抛物线y2=2px的焦点,设P为两曲线的一个公共点,则△PF1F2的面积为()A.18 B.18 C.36 D.36【考点】双曲线的简单性质.【分析】求出P的坐标,即可求出△PF1F2的面积.【解答】解:由题意,=6,p=12,双曲线方程与抛物线方程联立,可得P(9,6),∴△PF1F2的面积为=36,故选D.5.若实数x、y满足,则z=2x﹣y的最大值为()A. B. C.1 D.2【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线y=2x可得结论.【解答】解:作出约束条件,所对应的可行域(如图△ABO),变形目标函数可得y=2x﹣z,平移直线y=2x可知当直线经过点A时,直线的截距最小,z取最大值,由可得,A(,)代值计算可得z=2x﹣y的最大值为1,故选:C.6.已知命题p:∀x∈R,x2﹣2xsinθ+1≥0;命题q:∃α,β∈R,sin(α+β)≤sinα+sinβ,则下列命题中的真命题为()A.(¬p)∧q B.¬(p∧q) C.(¬p)∨q D.p∧(¬q)【考点】复合命题的真假.【分析】分别判断出p,q的真假,从而判断出复合命题的真假即可.【解答】解:关于命题p:∀x∈R,x2﹣2xsinθ+1≥0,△=4sin2θ﹣4≤0,故p是真命题,关于命题q:∃α,β∈R,sin(α+β)≤sinα+sinβ,是真命题,∴(¬p)∨q是真命题,故选:C.7.若函数f(x)为区间D上的凸函数,则对于D上的任意n个值x1、x2、…、xn,总有f(x1)+f(x2)+…+f(xn)≤nf(),现已知函数f(x)=sinx在[0,]上是凸函数,则在锐角△ABC中,sinA+sinB+sinC的最大值为()A. B. C. D.【考点】三角函数的化简求值.【分析】利用凸函数对于D上的任意n个值x1、x2、…、xn,总有f(x1)+f(x2)+…+f(xn)≤nf(),将函数f(x)=sinx在[0,],sinA+sinB+sinC,得到所求.【解答】解:由已知凸函数的性质得到sinA+sinB+sinC=3sin=;所以在锐角△ABC中,sinA+sinB+sinC的最大值为;故选D.8.三棱柱ABC﹣A1B1C1的侧棱垂直于底面,且AB⊥BC,AB=BC=AA1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为()A.48π B.32π C.12π D.8π【考点】球的体积和表面积.【分析】以AB,BC,AA1为棱构造一个正方体,则该三棱柱的所有顶点都在该正方体的外接球上,由此能求出该球的表面积.【解答】解:∵三棱柱ABC﹣A1B1C1的侧棱垂直于底面,且AB⊥BC,AB=BC=AA1=2,∴以AB,BC,AA1为棱构造一个正方体,则该三棱柱的所有顶点都在该正方体的外接球上,该球的半径R==,∴该球的表面积为S=4πR2=4π×3=12π.故选:C.9.执行如图所示的程序框图,若x∈[a,b],y∈[0,4],则b﹣a的最小值为()A.2 B.3 C.4 D.5【考点】程序框图.【分析】写出分段函数,利用x∈[a,b],y∈[0,4],即可b﹣a的最小值.【解答】解:由题意,y=,x∈[a,b],y∈[0,4],则b﹣a的最小值为2,此时区间为[0,2]或[2,4],故选A.10.已知向量、、满足=+,||=2,||=1,E、F分别是线段BC、CD的中点,若•=﹣,则向量与的夹角为()A. B. C. D.【考点】平面向量数量积的运算.【分析】由题意画出图形,结合•求得<,>的值,即可求出向量与的夹角.【解答】解:如图所示,•=(﹣)•(﹣)=•﹣﹣=﹣;由||=||=2,||=||=1,可得•=1,∴cos<,>=,∴<,>=,即向量与的夹角为.故选:B.11.一块边长为6cm的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正三棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为()A. B. C. D.【考点】棱柱、棱锥、棱台的体积.【分析】推导出PM+PN=6,且PM=PN,MN=3,PM=3,设MN中点为O,则PO⊥平面ABCD,由此能求出该容器的体积.【解答】解:如图(2),△PMN是该四棱锥的正视图,由图(1)知:PM+PN=6,且PM=PN,由△PMN为等腰直角三角形,知MN=3,PM=3,设MN中点为O,则PO⊥平面ABCD,∴PO=,∴该容器的体积为==9.故选:D.12.已知椭圆E:+=1的一个顶点为C(0,﹣2),直线l与椭圆E交于A、B两点,若E的左焦点为△ABC的重心,则直线l的方程为()A.6x﹣5y﹣14=0 B.6x﹣5y+14=0 C.6x+5y+14=0 D.6x+5y﹣14=0【考点】椭圆的简单性质.【分析】先由椭圆左焦点F1恰为△ABC的重心,得相交弦AB的中点坐标,再由点A、B在椭圆上,利用点差法,将中点坐标代入即可的直线l的斜率,最后由直线方程的点斜式写出直线方程即可.【解答】解:设A(x1,y1),B(x2,y2),椭圆+=1的左焦点为(﹣1,0),∵点C(0,﹣2),且椭圆左焦点F1恰为△ABC的重心∴=﹣1,=0∴x1+x2=﹣3,y1+y2=2①∵,,∴两式相减得:+=0将①代入得:=,即直线l的斜率为k==,∵直线l过AB中点(﹣,1)∴直线l的方程为y﹣1=(x+)故答案为6x﹣5y+14=0,故选B.二、填空题(共4小题,每小题5分,满分20分)13.若复数a+i是纯虚数,则实数a=0.【考点】复数代数形式的乘除运算.【分析】利用纯虚数的定义即可得出.【解答】解:∵复数a+i是纯虚数,则实数a=0.故答案为:0.14.曲线y=sinx+1在点(0,1)处的切线方程为x﹣y+1=0.【考点】利用导数研究曲线上某点切线方程.【分析】先对函数y=sinx+1进行求导,再根据导数的几何意义求出曲线y=sinx+1在点x=0处的切线斜率,由点斜式方程进而可得到切线方程.【解答】解:∵y′=cosx,∴切线的斜率k=y′|x=0=1,∴切线方程为y﹣1=x﹣0,即x﹣y+1=0.故答案为:x﹣y+1=0.15.已知f(x)是定义在R上的奇函数,f(x)满足f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x,则f(37.5)等于﹣0.5.【考点】抽象函数及其应用.【分析】根据题意,由f(x+2)=﹣f(x)可得f(x+4)=﹣f(x+2)=f(x),即函数f(x)的周期为4,即有f(37.5)=f(1.5),结合题意可得f(1.5)=f[2+(﹣0.5)]=﹣f(﹣0.5),结合函数的奇偶性可得f(0.5)=﹣f(﹣0.5),进而结合函数在0≤x≤1上的解析式可得f(0.5)的值,综合即可得答案.【解答】解:根据题意,由于f(x+2)=﹣f(x),则有f(x+4)=﹣f(x+2)=f(x),即函数f(x)的周期为4,则有f(37.5)=f(1.5+4×9)=f(1.5),又由f(x+2)=﹣f(x),则有f(1.5)=f[2+(﹣0.5)]=﹣f(﹣0.5),又由函数为奇函数,则f(0.5)=﹣f(﹣0.5),又由当0≤x≤1时,f(x)=x,则f(0.5)=0.5;则有f(37.5)=f(1.5)=﹣f(﹣0.5)=f(0.5)=0.5,故f(37.5)=0.5;故答案为:0.5.16.函数f(x)=sinωx+cosωx+1(ω>0)的最小正周期为π,当x∈[m,n]时,f(x)至少有5个零点,则n﹣m的最小值为2π.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】将函数化简为f(x)=2sin(2ωx+)+1.的最小正周期为π,可得f(x)=2sin(2x+)+1.可知在y轴左侧的第一个零点为,右侧的第一个零点为,x∈[m,n]时,f(x)至少有5个零点,可得n﹣m的最小值.【解答】解:函数f(x)=sinωx+cosωx+1(ω>0)化简可得:f(x)=2sin(2ωx+)+1.∵最小正周期为π,即T=π,∴,可得ω=1.∴f(x)=2sin(2x+)+1.根据正弦函数的图象及性质可知:函数f(x)的y轴左侧的第一个零点为,右侧的第一个零点为,x∈[m,n]时,f(x)至少有5个零点,不妨设m=,则n=.此时n﹣m可得最小值为2π.故答案为2π.三、解答题(共6小题,满分70分)17.在△ABC中,内角A、B、C所对的边分别是a、b、c,已知A=60°,b=5,c=4.(1)求a;(2)求sinBsinC的值.【考点】余弦定理;正弦定理.【分析】(1)由题意和余弦定理列出式子,即可求出a的值;(2)由条件和正弦定理求出sinB和sinC的值,代入式子求出答案.【解答】解:(1)因为A=60°,b=5,c=4,所以由余弦定理得,a2=b2+c2﹣2bccosA=25+16﹣=21,则a=;(2)由正弦定理得,==,所以sinB==,sinC==所以sinBsinC=×=.18.设等差数列{an}的公差为d,且2a1=d,2an=a2n﹣1.(1)求数列{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Sn.【考点】数列递推式;数列的求和.【分析】(1)利用递推关系、等差数列的通项公式即可得出.(2)利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(1)∵等差数列{an}的公差为d,2an=a2n﹣1.取n=1,则2a1=a2﹣1=a1+d﹣1,与2a1=d联立,解得d=2,a1=1.∴an=1+2(n﹣1)=2n﹣1.(2)bn===,∴数列{bn}的前n项和Sn=+…+,=+…++,∴=+…+﹣=﹣,∴Sn=2﹣.19.某市为了解各校(同学)课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,得到如图所示分布图:(Ⅰ)试确定图中实数a与b的值;(Ⅱ)若将等级A、B、C、D依次按照90分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;(Ⅲ)从两校获得A等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)由甲校样本频数分布条形图能求出a,由乙校样本频率分布条形图能求出b.(Ⅱ)由样本数据能求出甲校的平均值和乙校的平均值.(Ⅲ)由样本数据可知集训的5人中甲校抽2人,分别记作E,F,乙校抽3人,分别记作M,N,Q,从5人中任选2人,利用列举法能求出两人来自同一学校的概率.【解答】解:(Ⅰ)∵测试成绩从高到低依次分为A、B、C、D四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,∴由甲校样本频数分布条形图知:6+a+33+6=60,解得a=15,由乙校样本频率分布条形图得:0.15+b+0.2+0.15=1,解得b=0.5.(Ⅱ)由数据可得甲校的平均值为==67,乙校的平均值为=90×0.15+80×0.5+60×0.2+50×0.15=73.(Ⅲ)由样本数据可知集训的5人中甲校抽2人,分别记作E,F,乙校抽3人,分别记作M,N,Q,从5人中任选2人,一共有10个基本事件,分别为:EF,EM,EN,EQ,FM<FN,FQ,MN,MQ,NQ,其中2人来自同一学校包含中EF,MN<MQ<NQ,∴两人来自同一学校的概率p=.20.如图,三棱锥P﹣ABC中,PA=PC,底面ABC为正三角形.(Ⅰ)证明:AC⊥PB;(Ⅱ)若平面PAC⊥平面ABC,AB=2,PA⊥PC,求三棱锥P﹣ABC的体积.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(Ⅰ)取AC中点O,连接PO,BO,由等腰三角形的性质可得PO⊥AC,BO⊥AC,再由线面垂直的判定可得AC⊥平面POB,则AC⊥PB;(Ⅱ)由面面垂直的性质可得PO⊥平面ABC,再由已知求出三角形ABC的面积,即PO的长度,代入棱锥体积公式求得三棱锥P﹣ABC的体积.【解答】(Ⅰ)证明:如图,取AC中点O,连接PO,BO,∵PA=PC,∴PO⊥AC,又∵底面ABC为正三角形,∴BO⊥AC,∵PO∩OB=O,∴AC⊥平面POB,则AC⊥PB;(Ⅱ)解:∵平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,PO⊥AC,∴PO⊥平面ABC,又AB=2,PA⊥PC,可得PO=1,且.∴.21.已知圆C:(x﹣6)2+y2=20,直线l:y=kx与圆C交于不同的两点A、B.(Ⅰ)求实数k的取值范围;(Ⅱ)若=2,求直线l的方程.【考点】直线与圆的位置关系.【分析】(Ⅰ)根据题意可得圆心C(6,0)到直线l:y=kx的距离小于半径,由此求得k的范围.(Ⅱ)把直线l:y=kx代入圆C,化简后利用韦达定理,再根据=2,可得x2=2x1,从而求得k的值,可得直线l的方程.【解答】解:(Ⅰ)由题意可得,圆心C(6,0)到直线l:y=kx的距离小于半径,即<,求得﹣<k<.(Ⅱ)把直线l:y=kx代入圆C:(x﹣6)2+y2=20,化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论