2021年陕西省咸阳市南坊中学高三数学理期末试卷含解析_第1页
2021年陕西省咸阳市南坊中学高三数学理期末试卷含解析_第2页
2021年陕西省咸阳市南坊中学高三数学理期末试卷含解析_第3页
2021年陕西省咸阳市南坊中学高三数学理期末试卷含解析_第4页
2021年陕西省咸阳市南坊中学高三数学理期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年陕西省咸阳市南坊中学高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知实数x,y满足,则z=3x﹣y的最大值为()A.﹣5 B.1 C.3 D.4参考答案:C【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到z的最大值.【解答】解:不等式组,对应的平面区域如图:由z=3x﹣y得y=3x﹣z,平移直线y=3x﹣z,则由图象可知当直线y=3x﹣z经过点A时直线y=3x﹣z的截距最小,此时z最大,为3x﹣y=3.,解得,即A(1,0),此时点A在z=3x﹣y,解得z=3,故选:C.2.抛物线y2=4x的焦点为F,经过F的直线与抛物线在x轴上方的部分相交于点A,与准线l交于点B,且AK⊥l于K,如果|AF|=|BF|,那么△AKF的面积是()A.4 B.3 C.4 D.8参考答案:C【考点】直线与圆锥曲线的关系.【专题】直线与圆;圆锥曲线的定义、性质与方程.【分析】先根据抛物线方程求出焦点坐标和准线方程,运用抛物线的定义和条件可得△AKF为正三角形,F到l的距离为d=2,结合中位线定理,可得|AK|=4,根据正三角形的面积公式可得到答案.【解答】解:抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,由抛物线的定义可得|AF|=|AK|,由直角三角形的斜边上的中线等于斜边的一半,可得|FK|=|AF|,即有△AKF为正三角形,由F到l的距离为d=2,则|AK|=4,△AKF的面积是×16=4.故选:C.【点评】本题主要考查抛物线的基本性质和直线和抛物线的综合问题.直线和圆锥曲线的综合题是高考的热点要重视.3.如图给出的是计算的值的一个框图,其中菱形判断框内应填入的条件是(

)A.

B.

C.

D.

参考答案:C

【知识点】程序框图.L1解析:∵S=并由流程图中S=S+,故循环的初值为1,终值为10、步长为1,故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴应i>10,应满足条件,退出循环,填入“i>10”.故选C.【思路点拨】由本程序的功能是计算的值,由S=S+,故我们知道最后一次进行循环时的条件为i=10,当i>10应退出循环输出S的值,由此不难得到判断框中的条件.4.已知函数是奇函数,是偶函数,且=(

)A.-2

B.0

C.2

D.3参考答案:A5.已知某几何体的三视图如图所示,则该几何体的体积为(

)A.B.C.D.参考答案:C6.设=(2,3),在方向上的投影为3,在x轴上的投影为1,则=()A.(1,)B.(﹣1,)C.(1,)D.(﹣1,﹣)参考答案:A考点:平面向量数量积的运算;向量的线性运算性质及几何意义.专题:平面向量及应用.分析:由在x轴上的投影为1设出的坐标为(1,y),再由另外一个条件列出方程,求出y的值即可.解答:解:由在x轴上的投影为1,则设=(1,y),∵在方向上的投影为3,∴,解得y=,则=(1,),故选A.点评:本题主要考查向量投影的定义及其应用,考查灵活,巧妙既有知识的运用,也有少量的运算,是一道好题.7.已知函数的定义域为R,x∈[0,1]时,,对任意的x都有成立,则函数均零点的个数为

A.

6

B.

7

C.

8

D.

9参考答案:D8.已知函数,则A.

B.

C.

D.

参考答案:D略9.平面α截半径为2的球O所得的截面圆的面积为π,则球心到O平面α的距离为()A. B. C.1 D.2参考答案:A【考点】球的体积和表面积.【分析】先求截面圆的半径,然后求出球心到截面的距离.【解答】解:∵截面圆的面积为π,∴截面圆的半径是1,∵球O半径为2,∴球心到截面的距离为.故选:A10.给出计算的值的一个程序框图如图,其中判断框内应填入的条件是()A.i>10B.i<10C.i>20D.i<20参考答案:A考点:循环结构.专题:压轴题;图表型.分析:结合框图得到i表示的实际意义,要求出所需要的和,只要循环10次即可,得到输出结果时“i”的值,得到判断框中的条件.解答:解:根据框图,i﹣1表示加的项数当加到时,总共经过了10次运算,则不能超过10次,i﹣1=10执行“是”所以判断框中的条件是“i>10”故选A点评:本题考查求程序框图中循环结构中的判断框中的条件:关键是判断出有关字母的实际意义,要达到目的,需要对字母有什么限制.二、填空题:本大题共7小题,每小题4分,共28分11.已知球的半径为,圆,,为球的三个小圆,其半径分别为,,.若三个小圆所在的平面两两垂直且公共点为,则___________.参考答案:略12.直线所得的弦长是__________.参考答案:213.已知角的终边上一点的坐标为,则角的最小正值为___________.参考答案:14.在正方体ABCD﹣A1B1C1D1中,点P在线段AD'上运动,则异面直线CP与BA'所成的角θ的取值范围是.参考答案:【考点】异面直线及其所成的角.【分析】由A'B∥D'C,得CP与A'B成角可化为CP与D'C成角,由此能求出异面直线CP与BA′所成的角θ的取值范围.【解答】解:∵A'B∥D'C,∴CP与A'B成角可化为CP与D1C成角.∵△AD'C是正三角形可知当P与A重合时成角为,∵P不能与D'重合因为此时D'C与A'B平行而不是异面直线,∴.故答案为:.15.已知点F为双曲线与抛物线的公共焦点,M是C1与C2的一个交点,MF⊥x轴,则双曲线C1的离心率为___参考答案:16.(几何证明选讲选做题)如图,是圆的切线,为切点,是圆的割线,且,则

.参考答案:17.在△ABC中,,D是BC边上任意一点(D与B、C不重合),且,则角B等于

.参考答案:【知识点】向量的线性运算解三角形F1

C8.解析:由已知可得:,整理得,即,又因为在上,所以,即三角形为等腰三角形,所以,故答案为.【思路点拨】由已知变形可得,可得,即,三角形为等腰三角形,可求得.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数(1)求的最小正周期及其单调减区间;(2)当时,求的值域参考答案:

……………3分(1)函数的最小正周期.……4分

的单调减区间即是函数+1的单调增区间…5分由正弦函数的性质知,当,即时,函数+1为单调增函数,所以函数的单调减区间为,.

…………..7分(2)因为,所以,…8分所以…10分所以,…

11分

所以的值域为[-1,1]...12分19.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C的极坐标方程为,直线l的极坐标方程为.(1)写出曲线C与直线l的直角坐标方程;(2)设Q为曲线C上一动点,求Q点到直线l距离的最小值.参考答案:(1)

………………4分(2)设,则点:,

……………8分当且仅当

………10分(另解:设与椭圆方程联立,利用直线与椭圆相切求出,则点到直线的距离的最小值为两平行直线间的距离.)20.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(﹣x)成立,则称此函数f(x)具有“P(a)性质”.(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当﹣1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.参考答案:【考点】57:函数与方程的综合运用.【分析】(1)根据题意可知cos(x+a)=cos(﹣x)=cosx,故而a=2kπ,k∈Z;(2)由新定义可推出f(x)为偶函数,从而求出f(x)在[0,1]上的解析式,讨论m与[0,1]的关系判断f(x)的单调性得出f(x)的最值;(3)根据新定义可知g(x)为周期为2的偶函数,作出g(x)的函数图象,根据函数图象得出p的值.【解答】解:(1)假设y=cosx具有“P(a)性质”,则cos(x+a)=cos(﹣x)=cosx恒成立,∵cos(x+2kπ)=cosx,∴函数y=cosx具有“P(a)性质”,且所有a的值的集合为{a|a=2kπ,k∈Z}.

(2)因为函数y=f(x)具有“P(0)性质”,所以f(x)=f(﹣x)恒成立,∴y=f(x)是偶函数.

设0≤x≤1,则﹣x≤0,∴f(x)=f(﹣x)=(﹣x+m)2=(x﹣m)2.①当m≤0时,函数y=f(x)在[0,1]上递增,值域为[m2,(1﹣m)2].②当时,函数y=f(x)在[0,m]上递减,在[m,1]上递增,ymin=f(m)=0,,值域为[0,(1﹣m)2].

③当时,ymin=f(m)=0,,值域为[0,m2].④m>1时,函数y=f(x)在[0,1]上递减,值域为[(1﹣m)2,m2].

(3)∵y=g(x)既具有“P(0)性质”,即g(x)=g(﹣x),∴函数y=g(x)偶函数,又y=g(x)既具有“P(2)性质”,即g(x+2)=g(﹣x)=g(x),∴函数y=g(x)是以2为周期的函数.

作出函数y=g(x)的图象如图所示:由图象可知,当p=0时,函数y=g(x)与直线y=px交于点(2k,0)(k∈Z),即有无数个交点,不合题意.

当p>0时,在区间[0,2016]上,函数y=g(x)有1008个周期,要使函数y=g(x)的图象与直线y=px有2017个交点,则直线在每个周期内都有2个交点,且第2017个交点恰好为,所以.同理,当p<0时,.综上,.21.已知A为焦距为的椭圆E:(a>b>0)的右顶点,点P(0,),直线PA交椭圆E于点B,.(1)求椭圆E的方程;(2)设过点P且斜率为k的直线l与椭圆E交于M、N两点(M在P、N之间),若四边形MNAB的面积是△PMB面积的5倍.求直线l的斜率k.参考答案:(1)+=1;(2)k=±【分析】(1)先根据条件得B点坐标,代入椭圆方程,再与焦距联立方程组解得(2)根据面积关系得,联立直线方程与椭圆方程,利用韦达定理建立等量关系解得斜率.【详解】(1)由题意,得焦距2c=2,∴2c=2,c=,∵,所以点B为线段AP的中点,因为点P(0,2),A(a,0),∴B(,),因为点B(,)在椭圆E上,∴+=1,即b2=4,2=b2+c2=9,∴椭圆E的方程为+=1.(2)由题可得S△PAN=6S△PBM,即|PA|?|PN|?sin∠APN=6×|PB|?|PM|?sin∠BPM,∴|PN|=3||,∴,设M(x1,y1),N(x2,y2),于是=(x1,y1-2),=(x2,y2-2),∴3(x1,y1-2)=(x2,y2-2),∴x2=3x1,即=3,于是+=,即=,①,联立,消去y,整理得(9k2+4)x2+36kx+72=0,由△=(36k)2-4×(9k2+4)×72>0,解得k2>,∴x1+x2=-,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论