![行列式及其应用_第1页](http://file4.renrendoc.com/view/3f47335bc529a2febaf8976cf36ba062/3f47335bc529a2febaf8976cf36ba0621.gif)
![行列式及其应用_第2页](http://file4.renrendoc.com/view/3f47335bc529a2febaf8976cf36ba062/3f47335bc529a2febaf8976cf36ba0622.gif)
![行列式及其应用_第3页](http://file4.renrendoc.com/view/3f47335bc529a2febaf8976cf36ba062/3f47335bc529a2febaf8976cf36ba0623.gif)
![行列式及其应用_第4页](http://file4.renrendoc.com/view/3f47335bc529a2febaf8976cf36ba062/3f47335bc529a2febaf8976cf36ba0624.gif)
![行列式及其应用_第5页](http://file4.renrendoc.com/view/3f47335bc529a2febaf8976cf36ba062/3f47335bc529a2febaf8976cf36ba0625.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
行列式及其应用第一页,共七十一页,编辑于2023年,星期一
学习要点:
1.了解行列式的定义及其性质。
2.会运用行列式的性质求行列式的值。
3.重点掌握行列式在理论推导中的应用,主要有以下三个定理:(1)行列式展式定理;(2)克莱姆法则;(3)行列式乘法定理。第二页,共七十一页,编辑于2023年,星期一3.1行列式的定义引例3.1
用消元法解二元线性方程组
解第一个方程乘以a22,第二个方程乘以a12,然后两方程相减得类似可得第三页,共七十一页,编辑于2023年,星期一当
时,得方程组的解我们引进二阶行列式的概念,即定义那么,方程组的解可整齐地表示为第四页,共七十一页,编辑于2023年,星期一二阶行列式又称为二阶方阵的行列式类似地,如果定义三阶行列式记作第五页,共七十一页,编辑于2023年,星期一含有三个未知量的线性方程组当系数矩阵的行列式
时,通过计算可知其解可整齐地表示为
第六页,共七十一页,编辑于2023年,星期一第七页,共七十一页,编辑于2023年,星期一问题使得方程组的解可整齐地表示为设n×n的线性方程组如何定义n阶行列式第八页,共七十一页,编辑于2023年,星期一(这里假设分母不为零)第九页,共七十一页,编辑于2023年,星期一在中划掉第i行和第j列元素而剩下的元素按原来相对位置不变所构成的低一阶的行列式,称为(i,j)元素的余子式,记为Mij
,称Aij
=(-1)i+jMij为(i,j)元素的代数余子式。第十页,共七十一页,编辑于2023年,星期一例如第十一页,共七十一页,编辑于2023年,星期一n阶行列式的值定义如下:定义3.1(行列式的递归定义)当n=1时,=a11;当n≥2时,假设对n-1阶行列式已有定义,则(上式又称按第一行展开)(3.1)第十二页,共七十一页,编辑于2023年,星期一由定义,可得二阶行列式与三阶行列式的计算第十三页,共七十一页,编辑于2023年,星期一计算下三角行列式按第1行展开按第1行展开解根据行列式的定义例3.1第十四页,共七十一页,编辑于2023年,星期一特别地,第十五页,共七十一页,编辑于2023年,星期一对于方阵,设Aij表示元素aij的代数余子式,称矩阵为A的伴随矩阵。3.2行列式的性质定义3.2(伴随矩阵的定义)第十六页,共七十一页,编辑于2023年,星期一定理3.1(行列式展开定理)即行列式等于其任一行(列)元素与其对应的代数余子式乘积之和(亦即行列式可按任一行或任一列展开);任一行(列)元素与另一行(列)元素所对应的代数余子式乘积之和为零。即第十七页,共七十一页,编辑于2023年,星期一按第1行展开例3.2验证行列式的展开定理解按第3行展开按第3列展开第十八页,共七十一页,编辑于2023年,星期一再验证一下错列或错行展开是否为零?第十九页,共七十一页,编辑于2023年,星期一设,求D的第3列元素的代数余子式之和。根据行列式的展开定理可得从而,即,练习
已知
计算例3.3解第二十页,共七十一页,编辑于2023年,星期一利用展开定理得到计算行列式的基本方法Ⅰ
“降阶法”,即利用行列式展开定理,可将n阶行列式的计算转化为n-1阶行列式的计算。
根据行列式的展开定理,按第一列展开得计算上三角行列式例3.4解第二十一页,共七十一页,编辑于2023年,星期一例如性质3.1
如果行列式有一行(列)的元素为零,则该行列式的值等于零。第二十二页,共七十一页,编辑于2023年,星期一性质3.2
若行列式的某一行(列)的所有元素均为两个数之和,则该行列式等于相应的两个行列式的和。例如第二十三页,共七十一页,编辑于2023年,星期一如果某一行(列)是两组数的和,则此行列式就等于两个行列式的和,而这两个行列式除这一行(列)以外全与原来行列式的对应的行一样。=?第二十四页,共七十一页,编辑于2023年,星期一性质3.3
设A是一个方阵,
相应于方阵的三种初等行(列)变换,行列式也有相应的三种行(列)变换。一次变换后,其值会发生怎样的变化呢?(1)设,则(2)设,则(3)设,则推论3.1如果行列式中有两行(列)的元素相同,则该行列式的值为零。例如第二十五页,共七十一页,编辑于2023年,星期一性质3.4如果行列式中的某行元素(列)有公因子,则该公因子可提到行列式的外面。例如第二十六页,共七十一页,编辑于2023年,星期一推论3.2对于n阶方阵A,则是一个数。推论3.3如果行列式中有两行(列)元素对应成比例,则其行列式的值为零。例如第二十七页,共七十一页,编辑于2023年,星期一利用行列式的性质得到计算行列式的基本方法Ⅱ
“化三角形法”。其基本思路是:通过行列式的行(列)变换将行列式化简为阶梯形行列式,再利用三角形行列式的值等于其对角线上元素的积计算其结果。解只用ri+krj这种变换,例3.5把行列式化为三角形,然后计算行列式D的值。第二十八页,共七十一页,编辑于2023年,星期一只用ri+krj变换或只用ci+kcj变换一定能把行列式化为上(下)三角形,行列式的值不变。第二十九页,共七十一页,编辑于2023年,星期一说明1行列式的性质凡是对行成立的,对列也成立,反之亦然。说明2计算行列式的方法很多,技巧也很强,重点掌握降阶法和化三角形法。定理3.2矩阵A的行列式与其转置矩阵AT的行列式的值相等,即第三十页,共七十一页,编辑于2023年,星期一计算行列式将行列式第2、3、4列加到第一列,得例3.6解第三十一页,共七十一页,编辑于2023年,星期一特征1:对于所有行(列)元素相加后相等的行列式,可把第2行至n行加到第一行(列),提取公因子后在简化计算。
将行列式第2,3,…,n列加到第一列,得计算n
阶行列式例3.7解第三十二页,共七十一页,编辑于2023年,星期一第三十三页,共七十一页,编辑于2023年,星期一计算n
阶行列式
利用初等列变换可将该行列式化为三角形行列式特征2:第一行,第一列及对角线元素除外,其余元素全为零的行列式称为爪型行列式。例3.8解第三十四页,共七十一页,编辑于2023年,星期一计算范德蒙德(Vandermonde)行列式
从最后一行开始,每行减去上一行的an倍。特征3:范德蒙德(Vandermonde)行列式的计算过程及结论。例3.9解第三十五页,共七十一页,编辑于2023年,星期一第三十六页,共七十一页,编辑于2023年,星期一按最后一列展开第三十七页,共七十一页,编辑于2023年,星期一第三十八页,共七十一页,编辑于2023年,星期一所以根为x=1,2,3.
利用范德蒙德行列式练习题1解第三十九页,共七十一页,编辑于2023年,星期一定理3.3(行列式的乘法定理)
只用第三种初等行变换可把A化为上三角矩阵
证明设A,B是n阶方阵,则注
当A,B都是n阶方阵时,一定有
只用第三种初等列变换可把B化为上三角矩阵
即存在第三种初等矩阵
使得
并有
因此第四十页,共七十一页,编辑于2023年,星期一设A是奇数阶方阵,且证明例3.10证明第四十一页,共七十一页,编辑于2023年,星期一解例3.11
,计算第四十二页,共七十一页,编辑于2023年,星期一3.3行列式的应用行列式的应用主要体现在理论推导。方阵A可逆的充分必要条件是,时,其逆矩阵,其中A*为A的伴随矩阵。定理3.4且当A可逆说明1该定理不仅可以用来判别方阵可逆,同时也提供了求逆矩阵的计算公式。说明2当时,A称为奇异矩阵,否则称为非奇异矩阵。第四十三页,共七十一页,编辑于2023年,星期一证明必要性设方阵A可逆,则存在A-1,使对上式两边取行列式,并利用行列式乘法定理得所以充分性所以A可逆,且设,由行列式展开定理第四十四页,共七十一页,编辑于2023年,星期一讨论矩阵何时可逆,且求其逆矩阵。A可逆的充分必要条件为例3.12解第四十五页,共七十一页,编辑于2023年,星期一求A的逆矩阵例3.13解第四十六页,共七十一页,编辑于2023年,星期一设例3.14证明证明A可逆的充要条件是并求其逆。第四十七页,共七十一页,编辑于2023年,星期一设A,B均为n阶方阵,证明AB可逆的充分必要条件是A,B均可逆。若A,B均可逆,则从而因此AB可逆。
反之,若AB可逆,则从而因此A、B可逆。
例3.15证明第四十八页,共七十一页,编辑于2023年,星期一有唯一解解的分量为定理3.5克莱姆法则注
通常把解的分量表达式叫做克莱姆法则。设,则线性方程组其中Dj(j=1,2,…,n)是把系数行列式D中第
j列换成向量b而得到的行列式。第四十九页,共七十一页,编辑于2023年,星期一可知A可逆,且方程组有惟一解,其解为由系数矩阵的行列式即证明第五十页,共七十一页,编辑于2023年,星期一比较左右两边矩阵的j行,得第五十一页,共七十一页,编辑于2023年,星期一推论3.4设齐次线性方程组Ax=0,如果系数矩阵行列式则方程组Ax=0只有零解。第五十二页,共七十一页,编辑于2023年,星期一已知抛物线经过三点(1,0),(2,3)
(-3,28),求该抛物线的方程。
将三点的坐标代入抛物线方程,得a,b,c应满足的非线性
经计算得
例3.16解方程组注
系数行列式是范德蒙行列式第五十三页,共七十一页,编辑于2023年,星期一故由克莱姆法则,上述方程组的惟一解为
于是所求抛物线方程为
第五十四页,共七十一页,编辑于2023年,星期一
系数行列式按第3行展开当时,齐次方程组有非零解。当为何值时,齐次方程组有非零解?
例3.17解第五十五页,共七十一页,编辑于2023年,星期一问a,b为何值时,方程组有唯一解,无解,无穷多解。有无穷多解时,求出其通解。已知方程组
系数矩阵是方阵首选行列式法例3.18解第五十六页,共七十一页,编辑于2023年,星期一当a≠1时,方程组有唯一解;a=1当时,方程组无解。当时,方程组有无穷多解。当a=1时,方程组可能无解也可能有无穷多解,需讨论。第五十七页,共七十一页,编辑于2023年,星期一通解为第五十八页,共七十一页,编辑于2023年,星期一定义3.3(n阶行列式的逆序数定义)其中,是自然数1,2,…,n的一个排列;是对所有这样的排列求和,共有项;是排列的逆序数,其定义为:在一个排列中,如果,则称出现一个逆序,一个排列中出现逆序的总数称为这个排列的逆序数。第五十九页,共七十一页,编辑于2023年,星期一例如因此第六十页,共七十一页,编辑于2023年,星期一解根据行列式的逆序数定义,能够出现x4,x3的项只有设例3.19问f(x)中x4,x3系数分别是多少?和故所以,x4,x3的系数分别为1,-4。第六十一页,共七十一页,编辑于2023年,星期一计算行列式D2n的值按第一行展开练习题2解第六十二页,共七十一页,编辑于2023年,星期一第六十三页,共七十一页,编辑于2023年,星期一计算n阶行列式的值按第一行展开练习题3解第六十四页,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《其他植物激素》课件
- 《限制性液体复苏》课件
- 2024年礼仪培训讲师课件
- 2025年自然科学研究与试验发展服务项目合作计划书
- 2025年涂料助剂:流平剂项目合作计划书
- 安全保畅专项施工方案
- 小学午托申请书
- 大学英语教学之中国文化缺位现象探究
- 大学生写论文怎么找参考文献
- 三八妇女节班会活动方案
- 酒店长包房租赁协议书范本
- 2 找春天 公开课一等奖创新教学设计
- 2025年江苏护理职业学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年江苏南京水务集团有限公司招聘笔试参考题库含答案解析
- 【道法】开学第一课 课件-2024-2025学年统编版道德与法治七年级下册
- 口腔门诊分诊流程
- 建筑工程施工安全管理课件
- 2025年春新外研版(三起)英语三年级下册课件 Unit2第1课时Startup
- 2025年上半年毕节市威宁自治县事业单位招考考试(443名)易考易错模拟试题(共500题)试卷后附参考答案
- 处方点评知识培训
- 2025年新合同管理工作计划
评论
0/150
提交评论