版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A. B. C. D.2.在中,,,下列结论中,正确的是()A. B.C. D.3.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米 B.200米 C.220米 D.100米4.已知3a﹣2b=1,则代数式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣35.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.其中合理的是()A.① B.② C.①② D.①③6.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm37.若α,β是一元二次方程3x2+2x-9=0的两根,则的值是(
).A. B.- C.- D.8.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是()A.= B.= C.= D.=9.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100° B.110° C.115° D.120°10.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△BEC=S△ADF.其中正确的有()A.1个 B.2个 C.3个 D.4个11.下列方程中有实数解的是()A.x4+16=0 B.x2﹣x+1=0C. D.12.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>- B.k>-且 C.k<- D.k-且二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为.14.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.15.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.16.如图,点P(3a,a)是反比例函(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.17.已知xy=3,那么的值为______.18.如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,关于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.20.(6分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.21.(6分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.22.(8分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.23.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24.(10分)观察规律并填空.______(用含n的代数式表示,n是正整数,且n≥2)25.(10分)已知,关于x的一元二次方程(k﹣1)x2+x+3=0有实数根,求k的取值范围.26.(12分)如图,一次函数y=﹣12x+52的图象与反比例函数y=(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.27.(12分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),∴AC=-1-(-1)=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴矩形ACDA′的面积等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,∴新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1.故选D.点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.2、C【解析】
直接利用锐角三角函数关系分别计算得出答案.【详解】∵,,∴,∴,故选项A,B错误,∵,∴,故选项C正确;选项D错误.故选C.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.3、D【解析】
在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.4、B【解析】
先变形,再整体代入,即可求出答案.【详解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故选:B.【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.5、B【解析】①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.6、A【解析】试题分析:0.001219=1.219×10﹣1.故选A.考点:科学记数法—表示较小的数.7、C【解析】分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.详解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.故选C.点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.8、D【解析】
根据平行线分线段成比例定理的逆定理,当或时,,然后可对各选项进行判断.【详解】解:当或时,,
即或.
所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.9、B【解析】
连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.10、C【解析】
根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.【详解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴,即BC•AD=AB•BE,∵∠AEB=90°,AE=BE,∴AB=BEBC•AD=BE•BE,∴BC•AD=AE2;③正确;设AE=a,则AB=a,∴CE=a﹣a,∴=,即,∵AF=AB,∴,∴S△BEC≠S△ADF,故④错误,故选:C.【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.11、C【解析】
A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.【详解】A.中△=02﹣4×1×16=﹣64<0,方程无实数根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;C.x=﹣1是方程的根;D.当x=1时,分母x2-1=0,无实数根.故选:C.【点睛】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.12、B【解析】
在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故选B.【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、.【解析】试题分析:设正方形的边长为y,EC=x,由题意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化简得y=4x,∴sin∠EAB=.考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义14、【解析】
解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,∵当x=a时,,∴P1的坐标为(a,),当x=2a时,,∴P2的坐标为(2a,),……∴Rt△P1B1P2的面积为,Rt△P2B2P3的面积为,Rt△P3B3P4的面积为,……∴Rt△Pn-1Bn-1Pn的面积为.故答案为:15、或【解析】
过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.【详解】如图所示,过点A作AG⊥BC,垂足为G,∵AB=AC=6,∠BAC=90°,∴BC==12,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,设BD=x,则EC=12-DE-BD=12-5-x=7-x,由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,当BD=3时,DG=3,AD=,当BD=4时,DG=2,AD=,∴AD的长为或,故答案为:或.【点睛】本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.16、y=【解析】设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=.∵点P(3a,a)是反比例函y=(k>0)与O的一个交点,∴3a2=k.∴a2==4.∴k=3×4=12,则反比例函数的解析式是:y=.故答案是:y=.点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.17、±2【解析】分析:先化简,再分同正或同负两种情况作答.详解:因为xy=3,所以x、y同号,于是原式==,当x>0,y>0时,原式==2;当x<0,y<0时,原式==−2故原式=±2.点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.18、+1【解析】
根据对称性可知:GJ∥BH,GB∥JH,∴四边形JHBG是平行四边形,∴JH=BG,同理可证:四边形CDFB是平行四边形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,设FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG•BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(负根已经舍弃),∴BF=+1=,∴FG+JH+CD=+1.故答案为+1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)m=2或m=1.【解析】
(1)由△=(-m)2-4×1×(m2-1)=4>0即可得;(2)将x=2代入方程得到关于m的方程,解之可得.【详解】(1)∵△=(﹣m)2﹣4×1×(m2﹣1)=m2﹣m2+4=4>0,∴方程有两个不相等的实数根;(2)将x=2代入方程,得:4﹣2m+m2﹣1=0,整理,得:m2﹣8m+12=0,解得:m=2或m=1.【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.20、(1)520千米;(2)300千米/时.【解析】试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程×1.3得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时,根据题意列出分式方程求出未知数x的值.试题解析:(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时依题意有:=3解得:x=120经检验:x=120分式方程的解且符合题意高铁平均速度:2.5×120=300千米/时答:高铁平均速度为2.5×120=300千米/时.考点:分式方程的应用.21、(1);(2).【解析】
(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1)∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,∴任取一个球,摸出球上的汉字刚好是“美”的概率P=(2)列表如下:美丽光明美----(美,丽)(光,美)(美,明)丽(美,丽)----(光,丽)(明,丽)光(美,光)(光,丽)----(光,明)明(美,明)(明,丽)(光,明)-------根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.【解析】
(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【详解】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则2k+b=03k+b=35,解得k=35∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距21米,由题意得,60x+70﹣95x=21,解得,x=1.2,前2分钟﹣3分钟,两机器人相距21米时,由题意得,35x﹣70=21,解得,x=2.1.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,4k+b=357k+b=0,解得k=-则直线GH的方程为y=-353x+当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米.【点睛】本题考查了一次函数的应用,读懂图像是解题关键..23、(1)3,补图详见解析;(2)【解析】
(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占,故该班团员人数为:(人),则发4条箴言的人数为:(人),所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键24、【解析】
由前面算式可以看出:算式的左边利用平方差公式因式分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购车合同格式
- 购销合同和采购合同的关联性分析
- 购销合同的适用范围解析
- 贷款协议解除协议文本
- 赛车手赛车赛事策划合同
- 转让协议与合同的适用范围比较
- 路灯建设项目招标文件
- 进度责任完成协议
- 酒店宴会食材采购合同
- 酒店家具采购合同合作愿景
- 思想道德与法治+2024年秋+试卷1
- 锰矿购销合同范本
- GB 12955-2024防火门
- 黑龙江省药品监督管理局直属事业单位招聘真题
- 2024-2030年中国民用雷达行业竞争现状及发展策略分析报告
- 直播电商代运营服务协议(GMV计费模式)
- 2024-2030年中国城市更新行业发展创新模式及投资规划研究报告
- 2024-2030年中国公路养护行业改革创新模式及未来发展规划分析报告
- 北京市海淀区2024-2025学年高三上学期11月期中考试地理试题 含解析
- 西门子S7-1500 PLC技术及应用 课件 第2章 S7-1500 PLC的系统配置与开发环境
- 2024年中国瓦楞包装纸箱市场调查研究报告
评论
0/150
提交评论