版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CA模型中山大学遥感与地理信息工程系2009.07.16劳春华trycourlchqq10gisgis一、CA概念CA英文全称是CelluarAutomata,中文译名为元胞自动机,又有人称之为细胞自动机。CA是一种时间、空间、状态都离散,(空间上的)相互作用和(时间上的)因果关系皆局部的格网动力学模型。具有模拟复杂系统时空演化过程的能力。1948年,数学家VonNeumann首次提出元胞自动机(CA)的概念。
二、CA组成
t时刻状态t+1时刻状态转换规则CA由“元胞”、“邻域”和“转换规则”三部分组成,元胞具有“状态”属性…………例如12碰上奇数+1碰上偶数+356碰上奇数+1碰上偶数+3碰上奇数+1碰上偶数+3…………元胞状态由1经过三次转换迭代变成6。如果任由元胞演变下去,将会产生一个复杂的无穷数列。三、CA分类元胞自动机的构建没有固定的数学公式,构成方式繁杂,变种很多,行为复杂,故其分类难度也较大。基于不同的出发点,元胞自动机可有多种分类。其中,最具影响力的当属S.Wolfram在80年代初做的基于动力学行为的元胞自动机分类,而基于维数的元胞自动机分类也是最简单和最常用的划分。
三、CA分类-基于动力学行为的元胞自动机(1)平稳型:自任何初始状态开始,经过一定时间运行后,元胞空间趋于一个空间平稳的构形,这里空间平稳即指每一个元胞处于固定状态。不随时间变化而变化。(2)周期型:经过一定时间运行后,元胞空间趋于一系列简单的固定结构(StablePaterns)或周期结构(PerlodicalPatterns)。由于这些结构可看作是一种滤波器(Filter),故可应用到图像处理的研究中。(3)混沌型:自任何初始状态开始,经过一定时间运行后,元胞自动机表现出混沌的非周期行为,所生成的结构的统汁特征不再变止,通常表现为分形分维特征。(4)复杂型:出现复杂的局部结构,或者说是局部的混沌,其中有些会不断地传播。从另一角度,元胞自动机可视为动力系统,因而可将初试点、轨道、不动点、周期轨和终极轨等一系列概念用到元胞自动机的研究中
三、CA分类-基于维数的元胞自动机一维元胞自动机二维元胞自动机三维元胞自动机高维元胞自动机
四、CA应用
CA应用社会学生物学
生态学数学
物理学
化学
地理学
……
研究经济危机的形成与爆发过程等肿瘤细胞的增长机理和过程模拟等生物群落的扩散模拟等研究数论和并行计算等用于磁场、电场等场的模拟,以及热扩散、热传导和机械波的模拟等海上石油泄露后的油污扩散、工厂周围废水、废气的扩散等过程的模拟
四、CA应用-地理学上的应用
CA应用土地利用变化城市扩展人口迁移火灾蔓延
沙漠化
洪水掩没
交通控制
……
五、生命游戏模型-最经典的CA模型MartinC(1970,1971)将生命游戏规则引入到数字游戏中。该游戏通过分布在二维空间网格上的细胞来发挥作用。每个细胞只以一种状态存在(0或1),并且在下个时刻的状态由当前状态以及与它最近的8个邻居的状态共同决定。
五、生命游戏模型-最经典的CA模型定义了如下3种转换规则:生存规则,周围有2个或者3个活着的邻居细胞,该活着的细胞将在下一时刻继续生存;死亡规划,周围活着的细胞有3个以上,或者少于2个,该活着的细胞将在下一时刻死亡;繁殖规则,周围存活邻居数达到3个,该死亡细胞在下一时刻被激活过来
五、生命游戏模型-最经典的CA模型从数学模型的角度看,该模型将平面划分成方格棋盘,每个方格代表一个元胞。元胞状态:0-死亡,1-活着;领域半径:Moore型;演化规则
五、生命游戏模型-最经典的CA模型
演示五、生命游戏模型-最经典的CA模型
五、基于空间数据挖掘的CA模型遥感影像:T1遥感影像:T2空间数据挖掘算法CA转换规则T时刻状态(T+1)时刻状态逻辑回归CA神经网络CA决策树CA蚁群CA支持向量机CA……五、基于空间数据挖掘的CA模型逻辑回归五、基于逻辑回归的CA模型
逻辑回归不同于线性回归,它研究的是一个事件发生的概率,与其他因素之间的关系。根据随机试验的结果,通过最大似然法对回归参数进行估计。五、基于逻辑回归的CA模型LogisticCA主要由三大部分组成,分别是全局性开发概率和局部作用的邻域影响以及随机项。这三部分相乘,得出最终转换概率。当转换概率大于给定阈值,发生由非城市用地到城市用地的转变,否则不发生转变。
五、基于逻辑回归的CA模型
准备数据操作流程处理数据编写代码模拟输出五、基于逻辑回归的CA模型-准备数据
数据准备2019年东莞市土地利用分类数据(2019.img)东莞市市中心点数据(Prop.shp)东莞市镇中心点数据(Town.shp)东莞市铁路线数据(Rail.shp)东莞市高速公路数据(Express.shp)
东莞市一般公路数据(Road.shp)以东莞市2019年到2019年为例2019年东莞市土地利用分类数据(2019.img)五、基于逻辑回归的CA模型-数据处理
2019.img2019.imgTown.shpRail.shpExpress.shp
Road.shpUrban2019.imgUrban2019.imgDisTown.imgDisRail.imgDisExpress.imgDisRoad.imgUrbanChange.imgProp.shpDisProp.imgUrban2019.txtUrban2019.txtdianData.shp五、基于逻辑回归的CA模型-数据处理
UrbanChange.imgdianData.shpTown.shpRail.shpExpress.shp
Road.shpDisTown.imgDisRail.imgDisExpress.imgDisRoad.imgProp.shpDisProp.imgdianValue.dbfDisTown.imgDisRail.imgDisExpress.imgDisRoad.imgDisProp.imgdianValue.dbf五、基于逻辑回归的CA模型-数据处理
Zfile.imgPgFile.img五、数据处理-获取UrbanChange.img加载2019年和2019年遥感分类图2019年遥感分类图2019年遥感分类图通过栅格运算,计算出2019年和2019年城市和非城市遥感分类图2019年和2019年城市和非城市遥感分类图如右图所示从下图可以看出,影像分辨率太高,行列数太多,可进行重采样,适当调低分辨率左图是重采样对话框,我们把分辨率调成85.5米可以看出,分辨率已经调成了85.5米打开2019年和2019年属性表,发现取值只有0和1,我们把这两年数据进行合成合成后的数据,如下对合成后的数据进一步处理,得到2019年和2019年城市变化遥感图,1为新增的,0为不变的,2为01年是城市的,05年还是城市下图是进一步处理好的数据导出01年到05年城市变化遥感数据,取名为UrbanChange.img打开erdas9.2,对UrbanChange.img进行采点,首先把Urbanchange.img的LayerType改成thematic打开UrbanChange.img,我们可以看到它本来的LayerType是Continuous把UrbanChange.img的LayerType改成ThematicClassifier->AccuracyAssessment,打开右下图窗口打开UrbanChange.img文件,Edit->Create/AddRandomPoints,打开生成随机点窗口点击SelectClasses,打开属性编辑窗口,选择1,设置采样点和搜索数,这里采5000个点,生成的随机点如右图所示把采到的点输出为dat数据,这里命名为diandata.dat利用同样的方法,对0值进行采样,这里采20000个点输出为diandata2.dat在我的电脑中看到点数据文件如下在excel中打开把diandata2.dat中的数据合到diandata.dat中来在第一行中插入一行,输入x,y作为标题名保存成csv格式,用记事本打开,如右图所示在我的电脑中,直接把diandata.csv改成diandata.txt,使用arcMap加载该点数据arcMap->tools->AddXYData,打开窗口如右图所示打开diandata.txt,如右图所示,这时点数据没有投影,点edit按钮,为点数据加投影点Import按钮,选择UrbanChange.img,把其投影导进来导进投影如上图所示确认后,arcMap根据点坐标生成矢量点数据,如上图点数据,放大图把点数据导出保存为diandata.shp生成矢量点数据后,把市中心、镇中心、铁路、高速公路、一般公路的矢量数据加进来,准备生成空间距离栅格数据下图是加进来的数据,用于生成空间距离变量栅格数据设定栅格运算的范围为UrbanChange.img的范围,cell大小为UrbanChange.img的大小开始计算离市中心距离,生成栅格数据生成的离市中心距离栅格数据如上生成离镇中心空间距离栅格数据生成的离镇中心距离栅格数据如上生成离铁路空间距离栅格数据生成的离铁路距离栅格数据如上生成的离高速公路空间距离栅格数据如上生成的离一般公路空间距离栅格数据如上下图是生成的栅格数据为了消除量纲影响,可对空间距离栅格数据进行归一化处理归一化离市中心距离栅格数据导出已经完成归一化的数据,存为DisProp_gyh.img用同样的方法,归一化其它空间距离变量栅格数据,如左图所示SpatialAnalystToolExtractionSample,对已经归一化的栅格数据和UrbanChange.img进行采样,结果存为DianValue.dbf从我的电脑上看采样好的数据在spss中打开采样好的数据,其中,只有列z_z_z2c1到6是有用的按顺序把列名改好,顺序为采样的时候,添加数据的顺序返回数据视图,发现有些点出现误差,UrbanChange的值为2,应该去掉,data->SelectCases选择UrbanChange的值不等2的行选择删掉未选中的数据返回数据视图中,这时,数据已经是可用的了Analyze->Regression->BinaryLogistic..,进行二项逻辑回归分析回归出来的系数的误差如下表所示,在ArcMap中进行栅格运算,算出Z值算出的Z值如上图所示导出成Zfile.img文件再进一步算出Pg值Pg值数据如上图所示导出为PgFile.img文件将PgFile.img转换成PgFile.txt右图是2019年和2019年城市和非城市分类图进行模拟的时候,可以把水体加进来,取值为2。新的栅格图的取值为:0,非城市;1城市;2水体把合成的栅格图导出为Urban2019.img和Urban2019.img再把Urban2019.img和Urban2019.img转换成Urban2019.txt和Urban2019.txt,作为模拟的输入数据从2019.img中提取开发适宜性数据,这里提取水体出来,取值为0,其它为1从2019.img中提取开发适宜性数据,这里提取水体出来,取值为0,其它为1提取出来的土地适宜性数据,如上图所示,这里也可以把保护区的数据加进来把土地适宜性文件导出来,取名为LandSuitable.img把LandSuitable.img转换成LandSuitable.txt,作为模拟时的输入数据五、基于逻辑回归的CA模型-编写代码
输入Urban2019.txtUrban2019.txtPgFile.txtLandSuitable.txt
UrbanSimulate2019.txt
CA迭代
输出运算五、基于逻辑回归的CA模型-核心代码变量
Publicdata(,)AsInt32‘2019urban.txt数据,以列行存储PublicdataFinal(,)AsInt32‘2019urban.txt数据,以列行存储PublictempData(,)AsInt32'临时数据PublicPgData(,)AsDouble'PgFile.txt数据,以列行存储PublicsuitableData(,)AsDouble'LandSuitable.txt数据,以列行存储PublicnoDataValueAsInt32'无值数据PublicxCor()AsInt32‘变化元胞的列坐标PublicyCor()AsInt32‘变化元胞的行坐标PublicupData()AsInt32‘变化元胞的数据值
PublicchgNumberAsInt32'变化的点PublicrdmAsRandom'产生随机数类PublicrealUrbanNumberAsInt32'实际城市数目PublicsimUrbanNumberAsInt32'模拟城市数目五、基于逻辑回归的CA模型-核心伪代码
for每一行
for每一列
ifdata(列,行)=NoDataordata(列,行)=1ordata(列,行)=2thentempdata(列,行)=data(列,行)else
计算领域影响con
计算随机因子影响rdmdata
读取土地适宜性因子suitabledata
读取PgFile.txt中的开发概率Pg
计算总开发概率P=con*rdmdata*suitabledata*PgifP>Pthresholdthentempdata(列,行)=1elsetempdata(列,行)=data(列,行)endif
endforendfor五、基于逻辑回归的CA模型-核心代码
PublicSubstickOne()Ks+=1‘Ks为迭代次数
DimiAsInt32,jAsInt32Forj=0Torows-1Fori=0Tocols-1
‘如果该元胞值处于无数据状态或者已经是城市或者是水体,则值不变
Ifdata(i,j)=noDataValueOrdata(i,j)=1Ordata(i,j)=2ThentempData(i,j)=data(i,j)
‘否则,计算该元胞城市开发概率Else
‘------------第一步,计算领域影响------------------DimconAsDouble=0DimtempIAsInt32,tempJAsInt32tempI=i-1'
IftempI>=0ThentempJ=j-1IftempJ>=0ThenIfdata(tempI,tempJ)=1Thencon+=1EndIftempJ=jIfdata(tempI,tempJ)=1Thencon+=1tempJ=j+1IftempJ<=rows-1ThenIfdata(tempI,tempJ)=1Thencon+=1EndIfEndIf
五、基于逻辑回归的CA模型-核心代码
tempI=itempJ=j-1IftempJ>=0ThenIfdata(tempI,tempJ)=1Thencon+=1EndIftempJ=j+1IftempJ<=rows-1ThenIfdata(tempI,tempJ)=1Thencon+=1EndIftempI=i+1IftempI<=cols-1ThentempJ=j-1IftempJ>=0ThenIfdata(tempI,tempJ)=1Thencon+=1EndIftempJ=jIfdata(tempI,tempJ)=1Thencon+=1tempJ=j+1IftempJ<=rows-1ThenIfdata(tempI,tempJ)=1Thencon+=1EndIfEndIfcon=con/8.0
‘算出领域影响值
‘----------------领域影响因子计算完毕----------------
五、基于逻辑回归的CA模型-核心代码
‘-------计算随机影响因子------------------
DimrdmDataAsDouble'随机影响因子
DimrungDaAsDouble=rdm.NextDouble+0.00001IfrungDa>=1ThenrungDa=rungDa-0.00001rdmData=Pow(-Log(rungDa),Rfa)+1
‘-------读取城市发展适
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水上乐园水上冲浪引水工程合同
- 印刷企业财务主管招聘合同
- 城市地下通道热熔标线施工合同
- 2024年广告投放合同详细规定与标的
- 骨干教师培训工作总结模板6篇
- 矿井钻机租赁协议
- 城市绿化工程招投标与合同管理
- 装饰装修工程招投标方案范本
- 财务成本降低:费用开支管理办法
- 创意设计工作室职员聘用合同
- 工程询价合同模板
- 事业单位招聘《综合基础知识》考试试题及答案
- 无锡风机吊装施工方案
- 《突发事件应急预案管理办法》知识培训
- 江苏省南京市建邺区2024-2025学年九年级上学期期中考试物理试题(无答案)
- 中小学师德师风建设各项制度汇编
- 2024年保安员证考试题库及答案(共260题)
- 公务员2024年国考申论真题(地市级)及参考答案
- XXXX酒店管理公司成立方案
- 民用无人机操控员执照(CAAC)考试复习重点题及答案
- 疼痛科整体规划和发展方案
评论
0/150
提交评论