版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若线段2a+1,a,a+3能构成一个三角形,则a的范围是()A.a>0 B.a>1 C.a>2 D.1<a<32.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1 B. C.2 D.3.如图,矩形ABCD中,∠AOB=60°,AB=3,则BD的长是()A. B.5 C. D.64.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE、OF、EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,则直线FE的函数解析式为.其中正确结论的个数是()A.2 B.3 C.4 D.55.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形 B.菱形 C.正方形 D.无法判断6.如图,在中,,是边上一条运动的线段(点不与点重合,点不与点重合),且,交于点,交于点,在从左至右的运动过程中,设BM=x,和的面积之和为y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.7.在以下列三个数为边长的三角形中,不能组成直角三角形的是()A.4、7、9 B.5、12、13 C.6、8、10 D.7、24、258.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.59.若,则的值是A. B. C. D.10.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为.12.如图,矩形ABCD中,AB=6,BC=8,E是BC上一点(不与B、C重合),点P在边CD上运动,M、N分别是AE、PE的中点,线段MN长度的最大值是_____.13.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)14.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_______.15.如图,在△ABC中,AB=AC,∠BAC=120°,S△ABC=8,点M,P,N分别是边AB,BC,AC上任意一点,则:(1)AB的长为____________.(2)PM+PN的最小值为____________.16.如图,菱形ABCD的两条对角线AC,四交于点O,若AC=6,BD=4,则菱形17.已知中,,点为边的中点,若,则长为__________.18.一个两位数,它的十位数上的数字比个位上的数字大2.且这个两位数小于40,则这个两位数是________.三、解答题(共66分)19.(10分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数At≤0.55B0.5<t≤120C1<t≤1.5aD1.5<t≤230Et>210请根据图表信息解答下列问题:(1)a=;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?20.(6分)点P(-2,4)关于y轴的对称点P'在反比例函数y=(k≠0)的图象上.(1)求此反比例函数关系式;(2)当x在什么范围取值时,y是小于1的正数?21.(6分)如图1,在正方形中,,为对角线上的一点,连接和.(1)求证:;(2)如图2,延长交于点,为上一点,连接交于点,且有.①判断与的位置关系,并说明理由;②如图3,取中点,连接、,当四边形为平行四边形时,求的长.22.(8分)如图,平行四边形ABCD的四个内角的平分线相交成四边形EFGH,求证:(1)EG=HF.(2)EG=BC-AB.23.(8分)李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式.24.(8分)某水果批发市场规定,批发苹果不少于100千克时,批发价为每千克3.5元,小王携带现金7000元到这市场购苹果,并以批发价买进.如果购买的苹果为x千克,小王付款后的剩余现金为y元(1)写出y关于x的函数关系式,并写出自变量x的取值范围;(2)若小王购买800千克苹果,则小王付款后剩余的现金为多少元?25.(10分)探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=.26.(10分)解不等式组并将解集在数轴上表示出来.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据三角形三边关系:任意两边之和大于第三边列出不等式组,解不等式组即可得出a的取值范围.【详解】解:由题意,得,解得a>1.故选B.2、C【解析】试题分析:∵菱形ABCD的边长为1,∴AD=AB=1,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=1,则对角线BD的长是1.故选C.考点:菱形的性质.3、D【解析】
先根据矩形的性质可得,再根据等边三角形的判定与性质可得,由此即可得出答案.【详解】四边形ABCD是矩形是等边三角形故选:D.【点睛】本题考查了矩形的性质、等边三角形的判定与性质,熟记矩形的性质是解题关键.4、B【解析】
①通过证明全等判断,②④只能确定为等腰三角形,不能确定为等边三角形,据此判断正误,③通过判断,⑤作于点M通过直角三角形求出E、F坐标从而求得直线解析式.【详解】∵点E、F都在反比例函数的图像上,∴,即,∵四边形是正方形,∴,∴∴,∴,①正确;∵∴,∵k的值不能确定,∴的值不能确定,②错误;∴只能确定为等腰三角形,不能确定为等边三角形,∴,,∴,,④错误;∵,∴,∴,③正确;作于点M,如图∵,为等腰直角三角形,,设,则,在中,,即,解得,∴,在正方形中,,∴,即为等腰直角三角形,∴,设正方形的边长为,则,在中,,即,解得∴,∴∴设直线的解析式为,过点则有解得故直线的解析式为;⑤正确;故正确序号为①③⑤,选.【点睛】本题考查了反比例函数与正方形的综合运用,解题的关键在于利用函数与正方形的相关知识逐一判断正误.5、B【解析】
作DF⊥BC,BE⊥CD,先证四边形ABCD是平行四边形.再证Rt△BEC≌Rt△DFC,得,BC=DC,所以,四边形ABCD是菱形.【详解】如图,作DF⊥BC,BE⊥CD,由已知可得,AD∥BC,AB∥CD∴四边形ABCD是平行四边形.在Rt△BEC和Rt△DFC中∴Rt△BEC≌Rt△DFC,∴BC=DC∴四边形ABCD是菱形.故选B【点睛】本题考核知识点:菱形的判定.解题关键点:通过全等三角形证一组邻边相等.6、B【解析】【分析】不妨设BC=2a,∠B=∠C=α,BM=x,则CN=a-x,根据二次函数即可解决问题.【详解】不妨设BC=2a,∠B=∠C=α,BM=m,则CN=a−x,则有S阴=y=⋅x⋅xtanα+(a−x)⋅(a−x)tanα=tanα(m2+a2−2ax+x2)=tanα(2x2−2ax+a2)∴S阴的值先变小后变大,故选:B【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.7、A【解析】
根据勾股定理逆定理逐项分析即可.【详解】解:A.∵42+72≠92,∴4、7、9不能组成直角三角形;B.∵52+122=132,∴5、12、13能组成直角三角形;C.∵62+82=102,∴6、8、10能组成直角三角形;D.∵72+242=252,∴7、24、25能组成直角三角形;故选A.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.8、C【解析】
连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.9、C【解析】
∵,∴b=a,c=2a,则原式.故选C.10、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,也是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故正确;C、是轴对称图形,也是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故错误.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每小题3分,共24分)11、12或4【解析】试题分析:当图形处于同一个象限时,则k=8+4=12;当图形不在同一个象限时,则k=8-4=4.考点:反比例函数的性质12、5【解析】
由条件可先求得MN=AP,则可确定出当P点运动到点C时,PA有最大值,即可求得MN的最大值【详解】∵M为AE中点,N为EP中点∴MN为△AEP的中位线,∴MN=AP若要MN最大,则AP最大.P在CD上运动,当P运动至点C时PA最大,此时PA=CA是矩形ABCD的对角线AC==10,MN的最大值=AC=5故答案为5【点睛】此题考查了三角形中位线定理和矩形的性质,解题关键在于先求出MN=AP13、-1【解析】
先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【详解】∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣1.故答案为:-1.【点睛】本题考查了函数值,解题的关键是掌握函数值的计算方法.14、1.【解析】试题分析:关于y轴对称的两点横坐标互为相反数,纵坐标相等,则m+2=4,n+5=3,解得:m=2,n=-2,则m+n=2+(-2)=1.考点:关于y轴对称15、4;2.【解析】
过点A作,垂足为G,依据等腰三角形的性质可得到,设,则,,然后依据三角形的面积公式列方程求解即可;作点A关于BC的对称点,取,则,过点作,垂足为D,当、P、M在一条直线上且时,有最小值,其最小值.【详解】(1)如图所示:过点A作AG⊥BC,垂足为G,∵AB=AC,∠BAC=120°,∴∠ABC=30°,设AB=x,则AG,BGx,则BCx,∴BC•AG•x•x=8,解得:x=4,∴AB的长为4,故答案为:4;(2)如图所示:作点A关于BC的对称点A',取CN=CN',则PN=PN',过点A'作A'D⊥AB,垂足为D,当N'、P、M在一条直线上且MN'⊥AB时,PN+PM有最小值,最小值=MN'=DA'AB=2,故答案为:2.【点睛】本题考查了翻折的性质、轴对称最短路径、垂线段的性质,将的长度转化为的长度是解题的关键.16、4【解析】
首先根据菱形的性质可知菱形的对角线垂直平分,然后在Rt△AOD中利用勾股定理求出AD的长,再由菱形的四边形相等,可得菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AO=12AC=3,DO=12在Rt△AOD中,AD=AO∴菱形ABCD的周长为413.故答案为:413.【点睛】本题考查了菱形的性质以及勾股定理的知识,解答本题的关键是掌握菱形的对角线互相垂直且平分以及勾股定理等知识.17、【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵∠ACB=90°,D为AB的中点,∴AB=2CD=1,故答案为:1.【点睛】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.18、31或1【解析】
首先设个位数字为x,则十位数字为x+2,即可以列出不等式求解.【详解】解:设个位数字为x,则十位数字为x+2,由题意得10(x+2)+x<40解得:因为x是非负整数,
所以x=1或0,该数的个位数字为1或0,则十位数字是3或2,故这个两位数为31或1.
故答案为:31或1.【点睛】此题考查一元一次不等式的应用,理解题意,找出不等关系列出不等式即可求解.三、解答题(共66分)19、(1)35;(2)答案见解析;(3)1<t≤1.5;(4)75%.【解析】
(1)100减去已知数,可得a;(2)根据a=35画出条形图;(3)中位数是第50个和51个数据的平均数;(4)用样本的达标率估计总体的达标情况.【详解】解:(1)a=100﹣5﹣20﹣30﹣10=35,故答案为35;(2)条形统计图如下:(3)∵100÷2=50,25<50<60,∴第50个和51个数据都落在C类别1<t≤1.5的范围内,即小王每天进行体育锻炼的时间在1<t≤1.5范围内;(4)被抽查学生的达标率=×100%=75%.【点睛】本题考核知识点:数据的描述,用样本估计总体.解题关键点:从统计图表获取信息,用样本估计总体.20、(1)y=;(2)x>1;【解析】
(1)先求出点P(-2,4)关于y轴的对称点P′的坐标,把点P′的坐标代入反比例函数y=(k≠0)即可求出k的值,进而得出反比例函数的解析式;(2)根据y是小于1的正数列出关于x的不等式组,求出x的取值范围即可.【详解】(1)∵点P(-2,4)与点P′关于y轴对称,∴P′(2,4),∵点P′在反比例函数y=(k≠0)的图象上,∴4=,解得k=1,∴反比例函数的关系式为:y=;(2)∵y是小于1的正数,∴0<<1,解得x>1.【点睛】此题考查待定系数法求反比例函数解析式,反比例函数的性质,关于x轴、y轴对称的点的坐标,解题关键在于把已知点代入解析式21、(1)证明步骤见解析;(2)①EF⊥AM,理由见解析;②【解析】
(1)证明△ABM≌△CBM(SAS)即可解题,(2)①由全等的性质和等边对等角的性质等量代换得到∠ECF=∠AEF,即可解题,②过点E作EH⊥CD于H,先证明四边形EBCH是矩形,再由平行四边形的性质得到E,G是AB的三等分点,最后利用斜边中线等于斜边一半即可解题.【详解】解(1)在四边形ABCD中,AB=BC,∠ABM=∠CBM=45°,BM=BM∴△ABM≌△CBM(SAS)∴AM=CM(2)①EF⊥AM由(1)可知∠BAM=∠BCM,∵CE=EF,∴∠ECF=∠EFC,又∵∠EFC=∠AEF,∴∠ECF=∠AEF,∴∠AEF+∠BAM=∠BCM+∠ECF=90°,∴∠ANE=90°,∴EF⊥AM②过点E作EH⊥CD于H,∵EC=EF,∴H是FC中点(三线合一),∠EHC=90°,在正方形ABCD中,∠EBC=∠BCH=90°,∴四边形EBCH是矩形,∴EB=HC,∵四边形AECF是平行四边形,G为AE中点,∴AE=CF,BE=DF∴CH=HF=DF同理AG=EG=BE∵AB=1∴AE=由①可知∠ENA=90°,∴NG=(斜边中线等于斜边一半)【点睛】本题考查了正方形的性质,平行四边形的性质,矩形的判定,直角三角形斜边的中线的性质,中等难度,熟悉图形的性质是解题关键.22、(1)见详解;(2)见详解.【解析】
(1)利用三个内角等于90°的四边形是矩形,即可证明;(2)延长AF交BC于M,通过全等得到AB=BM,然后证明四边形EMCG是平行四边形,得到EG=CM,即可得证.【详解】解:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABC+∠BCD=180°,
∵BH,CH分别平分∠ABC与∠BCD,
∴∠HBC=∠ABC,∠HCB=∠BCD,
∴∠HBC+∠HCB=(∠ABC+∠BCD)=×180°=90°,
∴∠H=90°,
同理∠HEF=∠F=90°,
∴四边形EFGH是矩形,∴EG=HF;(2)如图,延长AF交BC于M,由(1)中可知AE⊥AF,即∠BEA=∠BEM=90°,在Rt△ABE和Rt△MBE中,,∴△ABE≌△MBE,∴AB=MB,AE=EM,由于四边形ABCD是平行四边形,∴∠ABC=∠ADC,AB=CD∵BH,DF分别平分∠ABC与∠ADC,∴∠ABE=∠CDG,在Rt△ABE和Rt△CDG中,,∴△ABE≌△CDG,∴CG=AE,∴CG=EM,由于四边形EFGH是矩形,∴EM∥CG,∴四边形EMCG是平行四边形,∴EG=MC,由于MC=BC-BM,∴EG=BC-AB.【点睛】本题考查了矩形的判定,平行四边形的判定和性质,角平分线的定义,熟练掌握判定方法是解题的关键.23、(1)日销售量的最大值为120千克;(2)李刚家多宝鱼的日销售量y与上市时间x的函数解析式为.【解析】分析:(1)观察函数图象,找出拐点坐标即可得出结论;(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,分0≤x≤12和12<x≤20,找出图象上点的坐标,利用待定系数法即可求出函数解析式.详解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+1.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.点睛:本题考查了一次函数的应用、一次函数的图象以及待定系数法求函数解析式,解题的关键是:(1)观察函数图象,找出最高点;(2)分段利用待定系数法求出函数解析式.本题属于中档题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.24、(1)1≤x≤2000;(2)2元.【解析】
(1)利用已知批发价为每千克3.5元,小王携带现金7000元到这个市场购苹果,求得解析式,又因为批发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京航空航天大学《多轴系统动力学与控制》2021-2022学年期末试卷
- 南京工业大学浦江学院《税法》2023-2024学年第一学期期末试卷
- 方帽子店说课稿
- 《夜书所见》说课稿
- 南京工业大学浦江学院《操作系统》2021-2022学年期末试卷
- 简单的木材合同(2篇)
- 南京工业大学《移动通信与5G技术》2022-2023学年第一学期期末试卷
- 南京工业大学《土木工程图学及BIM》2023-2024学年第一学期期末试卷
- 新型病虫害防治技术的实施方案
- 实验探究加速度与力质量的关系教案
- 国家开放大学本科《纳税筹划》在线形考(形考任务三)试题及答案
- 交通工程中的人因工程与智能化
- 内分泌科疾病护理常规内分泌系统疾病护理常规
- 民航服务心理案例分析
- (高清版)JTGT 3371-01-2022 公路沉管隧道设计规范
- 第一单元中国特色社会主义的开创、坚持、捍卫和发展单元测试-2023-2024学年中职高教版(2023)中国特色社会主义
- 产后尿潴留的预防及护理
- 校园垃圾收集清运方案
- 洗车方案模板
- 2024年宣城宁国市从全市村社区“两委”干部中择优乡镇街道事业单位招聘笔试冲刺题
- 溶血发生的应急预案课件
评论
0/150
提交评论