陕西省定边县联考2022-2023学年数学八下期末学业质量监测模拟试题含解析_第1页
陕西省定边县联考2022-2023学年数学八下期末学业质量监测模拟试题含解析_第2页
陕西省定边县联考2022-2023学年数学八下期末学业质量监测模拟试题含解析_第3页
陕西省定边县联考2022-2023学年数学八下期末学业质量监测模拟试题含解析_第4页
陕西省定边县联考2022-2023学年数学八下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若代数式x+3有意义,则实数x的取值范围是()A.x≠-3 B.x>-3 C.x≥-3 D.任意实数2.下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④直角三角形的两个锐角互余;⑤同角或等角的补角相等.其中真命题的个数是()A.2个 B.3个 C.4个 D.5个3.如图,点是线段的中点,分别以为边作等腰和等腰,,连接,且相交于点,交于点,则下列说法中,不正确的是()A.是的中线 B.四边形是平行四边形C. D.平分4.如图,在四边形中,,要使四边形是平行四边形,下列可添加的条件不正确的是()A. B. C. D.5.下列式子是分式的是()A. B. C. D.6.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,点B恰好落在AB的中点E处,则∠A等于()A.25° B.30° C.45° D.60°7.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个 B.2个 C.3个 D.4个8.下列数据中不能作为直角三角形的三边长的是()A.1、 B. C.5、12、13 D.1、2、39.若a>b,则下列不等式中成立的是()A.a-5<b-5 B.5a<5b C.-5a<-5b D.a-b<010.一元二次方程4x2+1=3x的根的情况是(

)A.没有实数根

B.只有一个实数根

C.有两个相等的实数根

D.有两个不相等的实数根二、填空题(每小题3分,共24分)11.在Rt△ABC中,∠A=90°,有一个锐角为10°,BC=1.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.12.已知为分式方程,有增根,则_____.13.如图.在平面直角坐标系中,函数(其中,)的图象经过的顶点.函数(其中)的图象经过顶点,轴,的面积为.则的值为____.14.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为________.15.①412=_________;②3-27=___16.直线y=﹣2x+m﹣3的图象经过x轴的正半轴,则m的取值范围为.17.已知关于x的方程m2x2+2(m﹣1)x+1=0有实数根,则满足条件的最大整数解m是______.18.多边形的每个外角都等于45°,则这个多边形是________边形.三、解答题(共66分)19.(10分)已知关于x的一元二次方程(1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求m的取值范围。20.(6分)今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了_________名学生进行调查统计;(2)将条形统计图补充完整,扇形统计图中D类所对应的扇形圆心角大小为_________;(3)如果该校共有3000名学生,请你估计该校B类学生约有多少人?21.(6分)如图,中,,,.动点、均从顶点同时出发,点在边上运动,点在边上运动.已知点的运动速度是.当运动停止时,由,,构成的三角形恰好与相似.(1)试求点的运动速度;(2)求出此时、两点间的距离.22.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标是1.(1)求此一次函数的解析式;(2)请直接写出不等式(k-3)x+b>0的解集;(3)设一次函数y=kx+b的图象与y轴交于点M,点N在坐标轴上,当△CMN是直角三角形时,请直接写出所有符合条件的点N的坐标.23.(8分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.24.(8分)如图,在矩形ABCD中,E是AD边上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、QE(1)求证:四边形BPEQ是菱形:(2)若AB=6,F是AB中点,OF=4,求菱形BPEQ的面积.25.(10分)如图,在□ABCD中,AC,BD相交于点O,点E在AB上,点F在CD上,EF经过点O.求证:四边形BEDF是平行四边形.26.(10分)小明遇到这样一个问题:如图,点是中点,,求证:.小明通过探究发现,如图,过点作.交的延长线于点,再证明,使问题得到解决。(1)根据阅读材料回答:的条件是______(填“”“”“”“”或“”)(2)写出小明的证明过程;参考小明思考问题的方法,解答下列问题:(3)已知,中,是边上一点,,,分别在,上,连接.点是线段上点,连接并延长交于点,.如图,当时,探究的值,并说明理由:

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据二次根式有意义的条件即可求出答案.【详解】∵代数式有意义∴x+3≥0∴x≥-3.故选C.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.2、B【解析】

解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;命题②两点之间,线段最短,正确,为真命题;命题③相等的角是对顶角,错误,为假命题;命题④直角三角形的两个锐角互余,正确,为真命题;命题⑤同角或等角的补角相等,正确,为真命题,故答案选B.考点:命题与定理.3、D【解析】

根据平行四边形、全等三角形的判定与性质以及等腰三角形三线合一的性质,逐一判定即可.【详解】∵点是线段的中点,∴BC=EC∵等腰和等腰,,∴AB=AC=CD=DE,∠ABC=∠ACB=∠DCE=∠DEC=45°∴∠ACD=90°,AD=BC=EC∴∠CAD=∠CDA=45°∴AD∥BE∴四边形是平行四边形,故B选项正确;在△ABE和△DEB中,∴△ABE≌△DEB(SAS)∴,故C选项正确;∴∠DBE=∠AEB∴FC⊥BE∵AD∥BE∴FC⊥AD∴是的中线,故A选项正确;∵AC≠CE∴不可能平分,故D选项错误;故选:D.【点睛】此题主要考查平行四边形、全等三角形的判定与性质以及等腰三角形的性质,熟练掌握,即可解题.4、D【解析】

平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可.【详解】解:A.∵,∴四边形是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵,∴四边形是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;C.∵∴∵∴∴∴四边形是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加不一定是平行四边形,如图:四边形ABCD为等腰梯形,故本选项符合题意.故选:D【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.5、B【解析】

根据分母中含有字母的式子是分式,可得答案.【详解】解:是分式,故选:B.【点睛】本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式.6、B【解析】

先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【详解】解:∵△ABC沿CD折叠B与E重合,∴BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.【点睛】本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.7、C【解析】

根据中心对称图形的概念求解.【详解】第一个,是中心对称图形,故选项正确;第二个,是中心对称图形,故选项正确;第三个,不是中心对称图形,故选项错误;第四个,是中心对称图形,故选项正确.故选C.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、D【解析】

根据勾股定理的逆定理进行计算分析,从而得到答案.【详解】A、12+()2=()2,能构成直角三角形,故选项错误;B、()2+()2=()2,能构成直角三角形,故选项错误;C、52+122=132,能构成直角三角形,故选项错误;D、12+22≠32,不能构成直角三角形,故选项正确,故选D.【点睛】本题考查了勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.9、C【解析】

根据不等式的性质分析判断.【详解】A、在不等式a>b的两边同时减去1,即a-1>b-1.故本选项错误;

B、在不等式a>b的两边同时乘以1,即1a>1b.故本选项错误;

C、在不等式a>b的两边同时乘以-1,不等号的方向发生改变,即-1a<-1b;故本选项正确;

D、在不等式a>b的两边同时减去b,原不等式仍然成立,即a-b>2.故本选项错误.【点睛】本题主要考查了不等式的基本性质.在解答不等式的问题时,应密切关注符号的方向问题.10、A【解析】

先求出△的值,再判断出其符号即可.【详解】解:原方程可化为:4x2﹣3x+1=0,∵△=32﹣4×4×1=-7<0,∴方程没有实数根.故选A.二、填空题(每小题3分,共24分)11、1或2或4【解析】

如图1:当∠C=10°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=10°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=10°,∴△PBC是等边三角形,∴CP=BC=1;如图3:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°﹣30°=30°,∴PC=PB,∵BC=1,∴AB=3,∴PC=PB===2如图4:当∠ABC=10°时,∠C=30°,∵∠ABP=30°,∴∠PBC=10°+30°=90°,∴PC=BC÷cos30°=4.故答案为1或2或4.考点:解直角三角形12、【解析】

去分母得,根据有增根即可求出k的值.【详解】去分母得,,当时,为增根,故答案为:1.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.13、-1.【解析】

根据反比例函数K的几何意义即可得到结果【详解】解:依题意得:+=解得:K=,∵反比例函数图象在第2象限,∴k=-1.故答案为-1.【点睛】本题考查了反比例函数K的几何意义,正确掌握反比例函数K的几何意义是解题的关键.14、1【解析】试题分析:根据勾股定理得到AE==1,由平行线等分线段定理得到AE=BE=1,根据平移的性质即可得到结论.∵∠C=90°,AD=DC=4,DE=3,∴AE==1,∵DE∥BC,∴AE=BE=1,∴当点D落在BC上时,平移的距离为BE=1.考点:平移的性质15、①322,②-3,③4x【解析】

①根据二次根式的性质化简即可解答②根据立方根的性质计算即可解答③根据积的乘方,同底数幂的除法,进行计算即可解答【详解】①412=②3-27③(2x)2⋅x3÷【点睛】此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则16、m>1【解析】试题分析:根据y=kx+b的图象经过x轴的正半轴则b>0即可求得m的取值范围.解:∵直线y=﹣2x+m﹣1的图象经过x轴的正半轴,∴m﹣1>0,解得:m>1,故答案为:m>1.17、1【解析】

分m=1即m≠1两种情况考虑,当m=1时可求出方程的解,从而得出m=1符合题意;当m≠1时,由方程有实数根,利用根的判别式即可得出△=-8m+4≥1,解之即可得出m的取值范围.综上即可得出m的取值范围,取其内最大的整数即可.【详解】解:当m=1时,原方程为2x+1=1,解得:x=﹣,∴m=1符合题意;当m≠1时,∵关于x的方程m2x2+2(m﹣1)x+1=1有实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥1,解得:m≤且m≠1.综上所述:m≤.故答案为:1.【点睛】本题考查的是方程的实数根,熟练掌握根的判别式是解题的关键.18、八【解析】

根据多边形的外角和等于360°,用360°除以多边形的每个外角的度数,即可得出这个多边形的边数.【详解】解:∵360°÷45°=8,∴这个多边形是八边形.故答案为:八.【点睛】此题主要考查了多边形的外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于360°.三、解答题(共66分)19、(1)见解析;(2)【解析】

(1)根据判别式即可求出答案.(2)根据公式法即可求出答案两根,然后根据题意列出不等式即可求出答案.【详解】(1)证明:.∵,即,∴此方程总有两个实数根.(2)解:解得,.∵此方程有一个根是负数,而,∴,即.∴m的取值范围是.【点睛】本题考查一元二次方程根的判别式,以及求根公式法解一元二次方程,解题的关键是熟练运用判别式以及一元二次方程的解法,本题属于中等题型.20、(1)50;(2)图见解析,;(3)该校B类学生约有1320人.【解析】

(1)根据A类的条形统计图和扇形统计图信息即可得;(2)先根据题(1)的结论求出D类学生的人数,由此即可得补充条形统计图,再求出D类学生的人数占比,然后乘以可得圆心角的大小;(3)先求出B类学生的人数占比,再乘以3000即可得.【详解】(1)这次调查共抽取的学生人数为(名)故答案为:50;(2)D类学生的人数为(名)则D类学生的人数占比为D类所对应的扇形圆心角大小为条形统计图补全如下:(3)B类学生的人数占比为则(人)答:该校B类学生约有1320人.【点睛】本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.21、(1);(2)D、E两点间的距离为或1.【解析】

(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.分两种情形分别构建方程即可解决问题.(2)分两种情形利用相似三角形的性质解决问题即可.【详解】解:(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.①当时,△ADE∽△ABC,∴,解得x=,∴点E的运动速度为cm/s.②当,△ADE∽△ACB,∴,∴x=,∴点E的是的为cm/s.(2)当△ADE∽△ABC时,,∴,∴DE=,当△ADE∽△ACB时,,∴,∴DE=1,综上所述,D、E两点间的距离为或1.【点睛】本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.22、(1)y=-x+4;(2)x<1;(3)当△CMN是直角三角形时,点N的坐标为(-4,0),(0,2),(-2,0),(0,3).【解析】

(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A,C的坐标,利用待定系数法即可求出此一次函数的解析式;(2)由(1)的结论可得出y=-4x+4,令y=0可求出该直线与x轴的交点坐标,再利用一次函数的性质即可求出不等式(k-3)x+b>0的解集;(3)利用一次函数图象上点的坐标特征可求出点M的坐标,分∠CMN=90°,∠MCN=90°及∠CNM=90°三种情况,利用等腰直角三角形的性质可求出点N的坐标.【详解】(1)当x=1时,y=3x=3,∴点C的坐标为(1,3).将A(-2,6),C(1,3)代入,得:,解得:,∴此一次函数的解析式为;(2)令,即,解得:.∵-4<0,∴y的值随x值的增大而减小,∴不等式>0的解集为x<1;(3)∵直线AB的解析式为,∴点M的坐标为(0,4),∴OB=OM,∴∠OMB=45°.分三种情况考虑,如图所示.①当∠CMN=90°时,∵∠OMB=45°,∴∠OMN=45°,∠MON=90°,∴∠MNO=45°,∴OM=ON,∴点N1的坐标为(-4,0);②当∠MCN=90°时,∵∠CMN=45°,∠MCN=90°,∴∠MNC=45°,∴CN=CM==,∴MN=CM=2,∴点N2的坐标为(0,2).同理:点N3的坐标为(-2,0);③当∠CNM=90°时,CN∥x轴,∴点N4的坐标为(0,3).综上所述:当△CMN是直角三角形时,点N的坐标为(-4,0),(0,2),(-2,0),(0,3).【点睛】本题是一次函数与几何的综合题,考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数的性质以及等腰直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)利用一次函数的性质,求出不等式的解集;(3)分∠CMN=90°,∠MCN=90°及∠CNM=90°三种情况,利用等腰直角三角形的性质求出点N的坐标.23、见解析【解析】

由菱形的性质可得,,然后根据角角边判定,进而得到.【详解】证明:∵菱形ABCD,∴,,∵,,∴,在与中,,∴,∴.【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.24、(1)详见解析;(2).【解析】

(1)先根据线段垂直平分线的性质证明PB=PE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形BPEQ是平行四边形,再根据菱形的判定即可得出结论;(2)先证明OF为△BAE的中位线,然后依据三角形的中位线定理得出AE∥OF且OF=AE.求得OB的长,则可得到BE的长,设菱形的边长为x,则AP=8﹣x,在Rt△APB中依据勾股定理可列出关于x的方程,然后依据菱形的面积公式进行计算即可.【详解】(1)证明:∵PQ垂直平分BE,∴PB=PE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠PEO=∠QBO,在△BOQ与△EOP中,,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵QB=QE,∴四边形BPEQ是菱形;(2)解:∵AB=6,F是AB的中点,∴BF=1.∵四边形BPEQ是菱形,∴OB=OE.又∵F是AB的中点,∴OF是△BAE的中位线,∴AE∥OF且OF=AE.∴∠BFO=∠A=90°.在Rt△FOB中,OB==5,∴BE=2.设菱形的边长为x,则AP=8﹣x.在Rt△APB中,BP2=AB2+AP2,即x2=62+(8﹣x)2,解得:x=,∴BQ=,∴菱形BPEQ的面积=BQ×AB=×6=.【点睛】本题考查了菱形的判定与性质、矩形的性质,平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论