




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,小明为了测量校园里旗杆的高度,将测角仪竖直放在距旗杆底部点的位置,在处测得旗杆顶端的仰角为60°若测角仪的高度是,则旗杆的高度约为()(精确到.参考数据:)A. B. C. D.2.已知一组数据1,l,,7,3,5,3,1的众数是1,则这组数据的中位数是().A.1 B.1.5 C.3 D.53.函数中,自变量x的取值范围是A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠04.已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图象大致是()A. B.C. D.5.下列哪个点在函数的图象上()A. B. C. D.6.如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是()A.△ABD≌△ECDB.连接BE,四边形ABEC为平行四边形C.DA=DED.CE=CA7.我国是最早了解勾股定理的国家之一.下面四幅图中,不能用来证明勾股定理的是()A. B. C. D.8.如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为()A. B. C. D.9.从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们五次数学测验成绩进行统计,得出他们的平均分均为85分,且,,,.根据统计结果,最适合参加竞赛的两位同学是()A.甲、乙 B.丙、丁 C.甲、丁 D.乙、丙10.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在的称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近就越给别人一种美的感觉.某女士身高为,脚底至肚脐的长度与身高的比为为了追求美,地想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为()A. B. C. D.11.如图四边形是菱形,顶点在轴上,,点在第一象限,且菱形的面积为,坐标为,则顶点的坐标为()A. B. C. D.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1 B.4S2 C.4S2+S3 D.3S1+4S3二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B=__________.14.函数与的图象如图所示,则的值为____.15.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.16.已知菱形有一个锐角为60°,一条对角线长为4cm,则其面积为_______cm1.17.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式_____.18.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办了“玩转数学”比赛.评委从研究报告、小组展示、答辩三个方面为每个参赛小组打分,按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,各项成绩均按百分制记录.甲小组的研究报告得85分,小组展示得90分,答辩得80分,则甲小组的参赛成绩为_____.三、解答题(共78分)19.(8分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.(1)当时,=,=;(2)求当为何值时,是直角三角形,说明理由;(3)求当为何值时,,并说明理由.20.(8分)2019年3月25日是全国中小学生安全教育日,某中学为加强学生的安全意识,组织了全校800名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图解题.(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=(2)补全频数分布直方图.(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?21.(8分)如图,已知△ABC.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题.(1)作∠ABC的平分线BD、交AC于点D;(2)作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE,DF;(3)写出你所作出的图形中的相等线段.22.(10分)(1)探究新知:如图1,已知与的面积相等,试判断与的位置关系,并说明理由.(2)结论应用:①如图2,点,在反比例函数的图像上,过点作轴,过点作轴,垂足分别为,,连接.试证明:.②若①中的其他条件不变,只改变点,的位置如图3所示,请画出图形,判断与的位置关系并说明理由.23.(10分)某学习小组在学习了函数及函数图象的知识后,想利用此知识来探究周长一定的矩形其边长分别为多少时面积最大.请将他们的探究过程补充完整.(1)列函数表达式:若矩形的周长为8,设矩形的一边长为x,面积为y,则有y=____________;(2)上述函数表达式中,自变量x的取值范围是____________;(3)列表:x…0.511.522.533.5…y…1.7533.7543.753m…写出m=____________;(4)画图:在平面直角坐标系中已描出了上表中部分各对应值为坐标的点,请你画出该函数的图象;(5)结合图象可得,x=____________时,矩形的面积最大;写出该函数的其它性质(一条即可):____________.24.(10分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表A(吨)B(吨)合计(吨)C240Dx260总计(吨)200300500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.25.(12分)如图,正方形网格上有和.(每一个小正方形的边长为)求证:;请你在正方形网格中画一个以点为位似中心的三角形并将放大倍.26.已知一次函数的图象经过点和.(1)求这个一次函数的解析式(2)不等式的解集是.(直接写出结果即可)
参考答案一、选择题(每题4分,共48分)1、D【解析】
过D作DE⊥AB,根据矩形的性质得出BC=DE=5m根据30°所对的直角边等于斜边的一半,可得AD=10,根据勾股定理可得的长,根据AB=AE+BE=AE+CD算出答案.【详解】过D作DE⊥AB于点E,∵在D处测得旗杆顶端A的仰角为60°,∴∠ADE=60°.∴∠DAE=30°.∵BC=DE=5m,AD=2DE=10∴,∴AB=AE+BE=AE+CD=8.65+1.6=10.25m≈10.3m.故答案为:D【点睛】本题考查了仰角俯角问题,正确作出辅助线,构造出30°直角三角形模型是解决问题的关键.2、B【解析】
数据1,1,x,7,3,2,3,1的众数是1,说明1出现的次数最多,所以当x=1时,1出现3次,次数最多,是众数;再把这组数据从小到大排列:1,1,1,1,3,3,2,7,处于中间位置的数是1和3,所以中位数是:(1+3)÷1=1.2.故选B.3、C【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.4、B【解析】试题分析:根据已知条件“点(k,b)为第四象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=kx+b的图象所经过的象限.解:∵点(k,b)为第四象限内的点,∴k>0,b<0,∴一次函数y=kx+b的图象经过第一、三象限,且与y轴交于负半轴,观察选项,B选项符合题意.故选B.考点:一次函数的图象.5、C【解析】
分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数的图象上,(2,0)也不在函数的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数的图象上,(−2,0)在函数的图象上.故选:C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.6、D【解析】
根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.【详解】解:∵CE∥AB,∴∠B=∠DCE,∠BAD=∠E,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴DA=DE,AB=CE,∵AD=DE,BD=CD,∴四边形ABEC为平行四边形,故选:D.【点睛】本题考查了平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解决本题的关键是证明△ABD≌△ECD.7、C【解析】
根据A、B、C、D各图形结合勾股定理一一判断可得答案.【详解】解:A、有三个直角三角形,其面积分别为ab,ab和,还可以理解为一个直角梯形,其面积为,由图形可知:=ab+ab+,整理得:(a+b)=2ab+c,a+b+2ab=2ab+c,a+b=c能证明勾股定理;B、中间正方形的面积=c,中间正方形的面积=(a+b)-4ab=a+b,a+b=c,能证明勾股定理;C、不能利用图形面积证明勾股定理,它是对完全平方公式的说明.D、大正方形的面积=c,大正方形的面积=(b-a)+4ab=a+b,,a+b=c,能证明勾股定理;故选C.【点睛】本题主要考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.8、A【解析】
先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.【详解】∵A(5,0)和B(0,4),∴OA=5,OB=4,∴AB=,即这两点之间的距离是.故选A.【点睛】本题考查了勾股定理的应用,根据坐标得出OA及OB的长是解题关键.9、C【解析】
方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,波动越小.选择方差较小的两位.【详解】解:从四个方差看,甲,丁的方差在四个同学中是较小的,方差小成绩发挥稳定,所以应选他们两人去参加比赛.故选:C.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、C【解析】
根据已知条件算出下半身身高,然后设选的高跟鞋的高度为xcm,根据比值是0.618列出方程,解方程即可【详解】根据已知条件得下半身长是160×0.6=96cm设选的高跟鞋的高度为xcm,有解得x≈7.5经检验x≈7.5是原方程的解故选C【点睛】本题考查分式方程的应用,能够读懂题意列出方程是本题关键11、C【解析】
过点C作x轴的垂线,垂足为E,由面积可求得CE的长,在Rt△BCE中可求得BE的长,可求得AE,结合A点坐标可求得AO,可求出OE,可求得C点坐标.【详解】如图,过点C作x轴的垂线,垂足为E,∵S菱形ABCD=20,∴AB⋅CE=20,即5CE=20,∴CE=4,在Rt△BCE中,BC=AB=5,CE=4,∴BE=3,∴AE=AB+BE=5+3=8.又∵A(−2,0),∴OA=2,∴OE=AE−OA=8−2=6,∴C(6,4),故选C.【点睛】此题考查菱形的性质,坐标与图形性质,解题关键在于作辅助线12、A【解析】
设等腰直角三角形的直角边长为a,中间小正方形的边长为b,则另两个直角三角形的边长分别为a-b,a+b,∴S1=12a平行四边形的面积=2S1+2S2+S3=a故答案选A.考点:直角三角形的面积.二、填空题(每题4分,共24分)13、77°【解析】
先根据旋转的性质得∠B=∠AB′C′,AC=AC′,∠CAC′=90°,则可判断△ACC′为等腰直角三角形,所以∠ACC′=∠AC′C=45°,然后根据三角形外角性质计算出∠AB′C′,从而得到∠B的度数.【详解】∵△ABC绕点A顺时针旋转90°后得到的△AB′C′,∴∠B=∠AB′C′,AC=AC′,∠CAC′=90°,∴△ACC′为等腰直角三角形,∴∠ACC′=∠AC′C=45°,∴∠AB′C′=∠B′CC′+∠CC′B′=45°+32°=77°,∴∠B=77°.故答案为77°.【点睛】此题考查旋转的性质,解题关键在于利用三角形外角性质.14、1【解析】
将x=1代入可得交点纵坐标的值,再将交点坐标代入y=kx可得k.【详解】解:把x=1代入得:y=1,∴与的交点坐标为(1,1),
把x=1,y=1代入y=kx得k=1.
故答案是:1.【点睛】本题主要考查两条直线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式.15、4.4×1【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:44000000=4.4×1,故答案为4.4×1.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16、或【解析】
首先根据题意画出图形,由菱形有一个锐角为60°,可得△ABD是等边三角形,然后分别从较短对角线长为4cm与较长对角线长为4cm,去分析求解即可求得答案.【详解】解:∵四边形ABCD是菱形,∠BAD=60°,
∴AB=AD,AC⊥BD,AO=OC,BO=OD,
∴△ABD是等边三角形,①BD=4cm,则OB=1cm,∴AB=BD=4cm;
∴OA==(cm),
∴AC=1OA=4(cm),
∴S菱形ABCD=AC•BD=(cm1);
②AC=4cm.
∵四边形ABCD是菱形,
∴AO=1cm,∠BAO=30°,
∴AB=1OB,∴,即,
∴OB=(cm),BD=cm
∴S菱形ABCD=AC•BD=(cm1);
综上可得:其面积为cm1或cm1.
故答案为:或.【点睛】本题考查菱形的性质、等边三角形的判定与性质以及勾股定理.解题的关键是熟练掌握菱形的四边相等、对角线互相垂直且平分的性质.17、【解析】如图所示:连接OB、AC相交于点E(3,1),过点E、M作直线EM,则直线EM即为所求的直线设直线EM的解析式为y=kx+b,把E、M两点坐标代入y=kx+b中,得解得所以直线的函数表达式:y=2x-5.故答案是:y=2x-5.【点睛】此题考查了平行四边形的性质、坐标与图形性质以及利用待定系数法求一次函数的解析式,解题的关键是求出其中心对称点的坐标,过点E和点M作直线EM,再用待定系数法求直线的解析式即可.18、85分【解析】
根据加权平均数的定义计算可得.【详解】根据题意知,甲小组的参赛成绩为85×40%+90×30%+80×30%=85(分),故答案为:85分.【点睛】本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.三、解答题(共78分)19、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析【解析】
(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;
(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;
(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【详解】解:(1)t=2时,CD=2×2=4,
∵∠ABC=90°,AB=16,BC=12,∴AD=AC-CD=20-4=16;(2)①∠CDB=90°时,∴解得BD=9.6,∴t=7.2÷2=3.6秒;
②∠CBD=90°时,点D和点A重合,
t=20÷2=10秒,
综上所述,当t=3.6或10秒时,是直角三角形;
(3)如图,过点B作BF⊥AC于F,
由(2)①得:CF=7.2,
∵BD=BC,∴CD=2CF=7.2×2=14.4,
∴t=14.4÷2=7.2,
∴当t=7.2秒时,,【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,熟练掌握相关的知识是解题的关键20、(1)200m=70n=0.12;(2)见解析;(3)224.【解析】
(1)用第一个分数段的频数除以它的频率可得到调查的总人数,然后用总人数乘以0.35得到m的值,用24除以总人数可得到n的值;
(2)利用80-90的频数为70可补全频数分布直方图;
(3)估计样本估计总体,用800乘以前面两分数段的频率之和可估计出该校安全意识不强的学生数.【详解】解:(1)16÷0.08=200,
m=200×0.35=70,n=24÷200=0.12;
故答案为200,70;0.12;
(2)如图,
(3)800×(0.08+0.2)=224,
所以该校安全意识不强的学生约有224人.【点睛】本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.21、(1)射线BD即为所求.见解析;(2)直线BD即为所求.见解析;(3)EB=ED=FD=FB,BO=DO,EO=FO.【解析】
(1)根据尺规作角平分线即可完成(2)根据线段垂直平分线的性质即可(3)根据线段垂直平分线的性质和全等三角形的知识即可找到相等的线段【详解】(1)射线BD即为所求.(2)直线BD即为所求.(3)记EF与BD的交点为O.因为EF为BD的垂直平分线,所以EB=ED,FB=FD,BO=DO,∠EOB=∠FOB=90°.因为BD为∠ABC的角平分线,所以∠ABD=∠CBD.因为∠ABD=∠CBD,BO=BO,∠EOB=∠FOB=90°,所以△EOB≌△FOB(ASA).所以EO=FO,BE=BF.因为EB=ED,FB=FD,BE=BF,所以EB=ED=FD=FB.因此,图中相等的线段有:EB=ED=FD=FB,BO=DO,EO=FO.【点睛】此题考查尺规作图,段垂直平分线的性质和全等三角形,解题关键在于掌握作图法则22、(1),理由见解析;(2)①见解析;②,理由见解析.【解析】
(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°,根据△ABC与△ABD的面积相等,证明AB与CD的位置关系;(2)连结MF,NE,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),进一步证明S△EFM=S△EFN,结合(1)的结论即可得到MN∥EF;(3)连接FM、EN、MN,结合(2)的结论证明出MN∥EF,GH∥MN,于是证明出EF∥GH.【详解】(1)如图1,分别过点、作、,垂足分别为、,则,∴,∵且,,∴,∴四边形为平行四边形,∴;(2)①如图2,连接,,设点的坐标为,点的坐标为,∵点,在反比例函数的图像上,∴,.∵轴,轴,且点,在第一象限,∴,,,.∴,,∴,从而,由(1)中的结论可知:;②如图,理由:连接,,设点的坐标为,点的坐标为,由(2)①同理可得:,,∴,从而,由(1)中的结论可知:.【点睛】本题主要考查反比例函数的综合题,解答本题的关键是根据同底等高的两个三角形面积相等进行解答问题,此题难度不是很大,但是三问之间都有一定的联系.23、见解析【解析】
(1)根据矩形的周长表示出另一边长,然后利用矩形面积公式即可求得y与x间的关系式;(2)根据矩形周长以及边长大于0即可求得;(3)把x=3.5代入(1)中的解析式即可求得m的值;(4)按从左到右的顺序用平滑的曲线进行画图即可;(5)观察图象即可得.【详解】(1)因为矩形一边长为x,则另一边长为(-x)=(4-x),依题意得:矩形的面积y=x(4-x),即y=-x2+4x,故答案为:-x2+4x;(2)由题意得,解得:0<x<4,故答案为:0<x<4;(3)当x=3.5时,y=-3.52+4×3.5=1.75,故答案为:1.75;(4)如图所示;(5)观察图象可知当x=2时矩形面积最大,轴对称图形;当0<x≤2时,y随x的增大而增大等,故答案为:2;轴对称图形或当0<x≤2时,y随x的增大而增大.【点睛】本题考查了二次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网金融平台用户信任度提升与风险控制策略研究
- 住宅空置车位管理办法
- 企业服务专员管理办法
- 中职食堂饭菜管理办法
- 乡村土地使用管理办法
- 丰田售后维修管理办法
- 乡镇人员考核管理办法
- 休学创业学籍管理办法
- 临时生产工厂管理办法
- 企业安全预防管理办法
- 新生儿科健康宣教手册
- 老旧小区施工安全文明施工方案
- JCT640-2010 顶进施工法用钢筋混凝土排水管
- 中科大固体物理课程作业答案88张课件
- 泵用机械密封的设计与制造
- SOAP病历的书写课件
- GB/T 25517.2-2010矿山机械安全标志第2部分:危险图示符号
- S-150溶剂油化学品安全技术说明书(江苏华伦)
- 七年级音乐作业
- 江苏建筑施工安全台账(正式版)
- 高中数学必修二 第十章 概率 章末测试(提升)(含答案)
评论
0/150
提交评论