高三数学测试考试必考的知识点分析_第1页
高三数学测试考试必考的知识点分析_第2页
高三数学测试考试必考的知识点分析_第3页
高三数学测试考试必考的知识点分析_第4页
高三数学测试考试必考的知识点分析_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三数学测试考试必考的知识点分析

一、简洁随机抽样

设一个总体的个体数为N,假如通过逐个抽取的(方法)从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简洁随机抽样。一般地假如用简洁随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简洁随机抽样方法有:抽签法、随机数法。

1.抽签法

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌匀称后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

2.随机数法

随机抽样中,另一个常常被采纳的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进展抽样。

二、活用随机抽样

系统抽样的最根本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,ak=m+(k-1)d,如此题中依据第一组的样本号码和组距,可得第k组抽取号码应当为9+30_(k-1)

三、系统抽样

当总体中的个体数较多时,采纳简洁随机抽样显得较为费事,这时,可将总体分成均衡的几个局部,然后根据预先定出的规章,从每一局部抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

四、分层抽样

当已知总体有差异明显的几局部组成时,为了使样本更充分地反映总体的状况,经常将总体分为几个局部,然后根据各个局部所占比例进展抽样,这种抽样叫做分层抽样,其中所分层的各局部叫做层

高三数学测试考试必考的学问点分析2

1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不行缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为根本问题,熟识公理、定理的内容和功能,通过对问题的分析与概括,把握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高(规律思维)力量和空间想象力量。

2.判定两个平面平行的方法:

(1)依据定义--证明两平面没有公共点;

(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:

(1)由定义知:“两平行平面没有公共点”;

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;

(3)两个平面平行的性质定理:“假如两个平行平面同时和第三个平(面相)交,那么它们的交线平行”;

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;

(5)夹在两个平行平面间的平行线段相等;

(6)经过平面外一点只有一个平面和已知平面平行。

高三数学测试考试必考的学问点分析3

1.不等式的定义:a-b0ab,a-b=0a=b,a-b0a

①其实质是运用实数运算来定义两个实数的大小关系。它是本章的根底,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟识的学问背景,来熟悉作差法比大小的理论根底是不等式的性质。

作差后,为推断差的符号,需要分解因式,以便使用实数运算的符号法则。

2.不等式的性质:

①不等式的性质可分为不等式根本性质和不等式运算性质两局部。

不等式根本性质有:

(1)abb

(2)ab,bcac(传递性)

(3)aba+cb+c(c∈R)

(4)c0时,abacbc

c0时,abac

运算性质有:

(1)ab,cda+cb+d。

(2)ab0,cd0acbd。

(3)ab0anbn(n∈N,n1)。

(4)ab0(n∈N,n1)。

应留意,上述性质中,条件与结论的规律关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件动身施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:

(1)依据给定的不等式条件,利用不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论