版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章平面向量一、选择题(第1题)1.在△ABC中,AB=AC,D,E分别是AB,(第1题)A.与共线 B.与共线C.与相等 D.与相等2.下列命题正确的是().A.向量与是两平行向量B.若a,b都是单位向量,则a=bC.若=,则A,B,C,D四点构成平行四边形D.两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足=a+b,其中a,b∈R,且a+b=1,则点C的轨迹方程为().A.3x+2y-11=0 B.(x-1)2+(y-1)2=5C.2x-y=0 D.x+2y-5=04.已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是(A. B. C. D.5.已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C),则=().A.λ(+),λ∈(0,1) B.λ(+),λ∈(0,)C.λ(-),λ∈(0,1) D.λ(-),λ∈(0,)6.△ABC中,D,E,F分别是AB,BC,AC的中点,则=().A.+ B.-C.+ D.+7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C8.点O是三角形ABC所在平面内的一点,满足·=·=·,则点O是△ABC的().A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点 D.三条高的交点9.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形 B.矩形 C.梯形 D.菱形(第10题)10.如图,梯形ABCD中,||=||,∥∥则相等向量是().(第10题)A.与 B.与C.与 D.与二、填空题11.已知向量=(k,12),=(4,5),=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足||=3,||=4,||=5,则·+·+·的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若++=0,则O是△ABC的.
16.设平面内有四边形ABCD和点O,=a,=b,=c,=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足=+λ(λ∈R),试求λ为何值时,点P在第三象限内?(第18题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于(第18题)
19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).((第19题)20.已知向量a=(cosθ,sinθ),向量b=(,-1),则|2a-b|的最大值.
参考答案一、选择题(第1题(第1题)解析:如图,与,与不平行,与共线反向.2.A解析:两个单位向量可能方向不同,故B不对.若=,可能A,B,C,D四点共线,故C不对.两向量相等的充要条件是大小相等,方向相同,故D也不对.3.D解析:提示:设=(x,y),=(3,1),=(-1,3),a=(3a,a),b=(-b,3b),又a+b=(3a-b,a+3b),∴(x,y)=(3a-b,a+3b),∴,又a+b=1,由此得到答案为D.4.B解析:∵(a-2b)⊥a,(b-2a)⊥b,∴(a-2b)·a=a2-2a·b=0,(b-2a)·b=b2-2a·b=0,∴a2=b2,即|a|=|b|.∴|a|2=2|a||b|cosθ=2|a|2cosθ.解得cosθ=.∴a与b的夹角是.5.A解析:由平行四边形法则,+=,又+=,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵=,∴=+=+.(第6题)7.C解析:由(a+2b)·(a-3b)=-72,得a2-a·b-6b2=-72.而|b|=4,a·b=|a||b|cos60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D解析:由·=·=·,得·=·,即·(-)=0,故·=0,⊥,同理可证⊥,∴O是△ABC的三条高的交点.9.C解析:∵=++=-8a-2b=2,∴∥且||≠||.∴四边形ABCD为梯形.10.D解析:与,与,与方向都不相同,不是相等向量.二、填空题11.-.解析:A,B,C三点共线等价于,共线,=-=(4,5)-(k,12)=(4-k,-7),=-=(-k,10)-(4,5)=(-k-4,5),又A,B,C三点共线,∴5(4-k)=-7(-k-4),∴k=-.12.-1.解析:∵M(-1,3),N(1,3),∴=(2,0),又a=,∴解得∴x=-1.13.-25.解析:思路1:∵=3,=4,=5,∴△ABC为直角三角形且∠ABC=90°,即⊥,∴·=0,∴·+·+·=·+·=·(+)=-()2=-=-25.思路2:∵=3,=4,=5,∴∠ABC=90°,∴cos∠CAB==,cos∠BCA==.D(第13题)根据数积定义,结合图(右图)知D(第13题)·=·cos∠ACE=4×5×(-)=-16,·=·cos∠BAD=3×5×(-)=-9.∴·+·+·=0―16―9=-25.14..解析:a+mb=(3+2m,4-m),a-b=(1,5).∵(a+mb)⊥(a-b),∴(a+mb)·(a-b)=(3+2m)×1+(4-m)×5=0m=.(第15(第15题)解析:如图,以,为邻边作□AOCF交AC于点E,则=+,又+=-,∴=2=-.O是△ABC的重心.16.答案:平行四边形.解析:∵a+c=b+d,∴a-b=d-c,∴=.∴四边形ABCD为平行四边形.三、解答题17.λ<-1.解析:设点P的坐标为(x,y),则=(x,y)-(2,3)=(x-2,y-3).+λ=(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵=+λ,∴(x-2,y-3)=(3+5λ,1+7λ).∴即(第18题)要使点P在第三象限内,只需解得λ<(第18题)18.=(,2).解析:∵A(7,8),B(3,5),C(4,3),=(-4,-3),=(-3,-5).又D是BC的中点,∴=(+)=(-4-3,-3-5)=(-7,-8)=(-,-4).又M,N分别是AB,AC的中点,∴F是AD的中点,∴=-=-=-(-,-4)=(,2).19.证明:设=a,=b,则=a+b,=b-a.(第19题)∴·=(a+b)·(b-a)=b2-a2+a·b.(第19题)又⊥,且=,∴a2=b2,a·b=0.∴·=0,∴⊥.本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a-b=(2cosθ-,2sinθ+1),∴|2a-b|2=(2cosθ-)2+(2sinθ+1)2=8+4sinθ-4cosθ.又4sinθ-4cosθ=8(sinθcos-cosθsin)=8sin(θ-),最大值为8,∴|2a-b|2的最大值为16,∴|2a-b|的最大值为4.思路2:将向量2a,b平移,使它们的起点与原点重合,则|2a-b|表示2a,b终点间的距离.|2a|=2,所以2a的终点是以原点为圆心,2为半径的圆上的动点P,b的终点是该圆上的一个定点Q,由圆的知识可知,|PQ|的最大值为直径的长为4.但具体落到实处应该是一种尊重,一种接人待物的方式方法。和文化知识有关,但不是必然,主要来自家庭的影响和后天的修为。赫本被誉为女神,不仅仅因其貌美,貌美的很多,并不能被全世界的人记住;也不是因为学历,比她学历高的比比皆是。但她用她的一生诠释了修养这个概念,她在遗言里这样说“若要优美的嘴唇,就要讲亲切的话。手不仅能解决自身问题还能帮助别人;脑不仅能原谅别人还可以让自身不断进步。我们身上每个零件都有用处,那些喜欢到处释放物质垃圾和精神垃圾的人都是不健全的。看过很多父母抱怨自己的孩子不如旁人,那就看看自己是不是样样都行,孩子其实就是站在你面前的镜子。在发成绩单时,在开家长会时,你恼怒了,你大打出手了,这恰恰暴露你精神世界的粗鄙。我倒是很感动一句话”不需要你养老,只感谢让我参与你的成长。“若要可爱的眼睛,就要看到别人的好处;若要苗条的身材,就要把你的食物分享给饥饿的人。若要美丽的秀发,在于每天有孩子的手指穿过它;若要优雅的姿态,走路时要记住行人不只你一个。人之所以为人,是必须充满精力,自我悔改,自我反省,自我成长;并非向人抱怨;当你需要帮助的时候,你可以求助于自己的双手;在年老之后,你会发现自己的双手能解决很多难题,一只手用来帮助自己,另一只用来帮助别人。这就是对修养最好的解读,也是做人的最高境界,更是心灵之美与外在之美完美的结合。并且修养之美无处不在渗透影响着你的外在之美。如果大家都能做到,那么我们都是天使。她告诉我们手是用来劳动而不是索取的,脑是用来忏悔而不是偏执的。手不仅能解决自身问题还能帮助别人;脑不仅能原谅别人还可以让自身不断进步。第二章平面向量一、选择题(第1题)1.在△ABC中,AB=AC,D,E分别是AB,AC的中点,则(第1题)A.与共线 B.与共线C.与相等 D.与相等2.下列命题正确的是().A.向量与是两平行向量B.若a,b都是单位向量,则a=bC.若=,则A,B,C,D四点构成平行四边形D.两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足=+,其中,∈R,且+=1,则点C的轨迹方程为().A.3x+2y-11=0 B.(x-1)2+(y-1)2=5C.2x-y=0 D.x+2y-5=04.已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是()A. B. C. D.5.已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C),则=().A.λ(+),λ∈(0,1) B.λ(+),λ∈(0,)C.λ(-),λ∈(0,1) D.λ(-),λ∈(0,)6.△ABC中,D,E,F分别是AB,BC,AC的中点,则=().A.+ B.-C.+ D.+7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.8.点O是三角形ABC所在平面内的一点,满足·=·=·,则点O是△ABC的().A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点 D.三条高的交点9.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形 B.矩形 C.梯形 D.菱形(第10题)10.如图,梯形ABCD中,||=||,∥∥则相等向量是().(第10题)A.与 B.与C.与 D.与二、填空题11.已知向量=(k,12),=(4,5),=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足||=3,||=4,||=5,则·+·+·的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若++=0,则O是△ABC的.
16.设平面内有四边形ABCD和点O,=a,=b,=c,=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足=+λ(λ∈R),试求λ为何值时,点P在第三象限内?(第18题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于(第18题)
19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).((第19题)20.已知向量a=(cosθ,sinθ),向量b=(,-1),则|2a-b|的最大值.
参考答案一、选择题(第1题(第1题)解析:如图,与,与不平行,与共线反向.2.A解析:两个单位向量可能方向不同,故B不对.若=,可能A,B,C,D四点共线,故C不对.两向量相等的充要条件是大小相等,方向相同,故D也不对.3.D解析:提示:设=(x,y),=(3,1),=(-1,3),=(3,),=(-,3),又+=(3-,+3),∴(x,y)=(3-,+3),∴,又+=1,由此得到答案为D.4.B解析:∵(a-2b)⊥a,(b-2a)⊥b∴(a-2b)·a=a2-2a·b=0,(b-2a)·b=b2-2a·∴a2=b2,即|a|=|b|.∴|a|2=2|a||b|cosθ=2|a|2cosθ.解得cosθ=.∴a与b的夹角是.5.A解析:由平行四边形法则,+=,又+=,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵=,∴=+=+.(第6题)7.C解析:由(a+2b)·(a-3b)=-72,得a2-a·b-6b2=-72.而|b|=4,a·b=|a||b|cos60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D解析:由·=·=·,得·=·,即·(-)=0,故·=0,⊥,同理可证⊥,∴O是△ABC的三条高的交点.9.C解析:∵=++=-8a-2b=2,∴∥且||≠||.∴四边形ABCD为梯形.10.D解析:与,与,与方向都不相同,不是相等向量.二、填空题11.-.解析:A,B,C三点共线等价于,共线,=-=(4,5)-(k,12)=(4-k,-7),=-=(-k,10)-(4,5)=(-k-4,5),又A,B,C三点共线,∴5(4-k)=-7(-k-4),∴k=-.12.-1.解析:∵M(-1,3),N(1,3),∴=(2,0),又a=,∴解得∴x=-1.13.-25.解析:思路1:∵=3,=4,=5,∴△ABC为直角三角形且∠ABC=90°,即⊥,∴·=0,∴·+·+·=·+·=·(+)=-()2=-=-25.思路2:∵=3,=4,=5,∴∠ABC=90°,∴cos∠CAB==,cos∠BCA==.D(第13题)根据数积定义,结合图(右图)D(第13题)·=·cos∠ACE=4×5×(-)=-16,·=·cos∠BAD=3×5×(-)=-9.∴·+·+·=0―16―9=-25.14..解析:a+mb=(3+2m,4-m),a-b=(1,5)∵(a+mb)⊥(a-b),∴(a+mb)·(a-b)=(3+2m)×1+(4-m)×5=0m=(第15题)(第15题)解析:如图,以,为邻边作□AOCF交AC于点E,则=+,又+=-,∴=2=-.O是△ABC的重心.16.答案:平行四边形.解析:∵a+c=b+d,∴a-b=d-c,∴=.∴四边形ABCD为平行四边形.三、解答题17.λ<-1.解析:设点P的坐标为(x,y),则=(x,y)-(2,3)=(x-2,y-3).+λ=(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵=+λ,∴(x-2,y-3)=(3+5λ,1+7λ).∴即(第18题)要使点P在第三象限内,只需解得λ(第18题)18.=(,2).解析:∵A(7,8),B(3,5),C(4,3),=(-4,-3),=(-3,-5).又D是BC的中点,∴=(+)=(-4-3,-3-5)=(-7,-8)=(-,-4).又M,N分别是AB,AC的中点,∴F是AD的中点,∴=-=-=-(-,-4)=(,2).19.证明:设=a,=b,则=a+b,=b-a.(第19题)∴·=(a+b)·(b-a)=b2-a2+a·b.(第19题)又⊥,且=,∴a2=b2,a·b=0.∴·=0,∴⊥.本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a-b=(2cosθ-,2sinθ+1),∴|2a-b|2=(2cosθ-)2+(2sinθ+1)2=8+4sinθ-4cosθ.又4sinθ-4cosθ=8(sinθcos-cosθsin)=8sin(θ-),最大值为8,∴|2a-b|2的最大值为16,∴|2a-b思路2:将向量2a,b平移,使它们的起点与原点重合,则|2a-b|表示2a,b终点间的距离.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度股权收益权转让合同-@-1
- 二零二五版电视产品安全检测合同4篇
- 2025年度航空货运托运航次运输合同仓储管理服务合同
- 二零二五年度汽车租赁行业规范经营合同2篇
- 2025年度可再生能源专利申请及实施合同
- 二零二四年度学生宿舍安全协议及消防管理合同3篇
- 2025年度户用光伏发电系统销售与能源互联网接入合同
- 2025年儿童服饰定制生产加工合同
- 2025年度户外广告牌广告牌广告位租赁期限延长合同
- 2025年度焊工焊接工艺改进与优化服务合同范本
- 2025年方大萍安钢铁招聘笔试参考题库含答案解析
- 2025年电力工程施工企业发展战略和经营计划
- 2024东莞市劳动局制定的劳动合同范本
- 2024年大学本科课程教育心理学教案(全册完整版)
- 主题二任务二 《探究身边信息技术的奥秘》 教学设计 2023-2024学年桂科版初中信息技术七年级上册
- 中国血管通路专家共识解读
- 开学前幼儿园安全培训
- 《装配式蒸压加气混凝土外墙板保温系统构造》中
- 《建设工程监理》课件
- 2019版新人教版高中英语必修+选择性必修共7册词汇表汇总(带音标)
- 中层领导的高绩效管理
评论
0/150
提交评论