版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2 D.32.已知二次函数(为常数)的图象与轴的一个交点为,则关于的一元二次方程的两实数根是()A., B., C., D.,3.已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是()A. B. C. D.4.某品牌鞋店在一个月内销售某款女鞋,各种尺码鞋的销量如下表所示:尺码/厘米
22.5
23
23.5
24
24.5
销售量/双
35
40
30
17
8
通过分析上述数据,对鞋店业主的进货最有意义的是A.平均数 B.众数 C.中位数 D.方差5.如图,四边形是平行四边形,对角线、交于点,是的中点,以下说法错误的是()A. B. C. D.6.如图,中,,点D在AC边上,且,则的度数为A. B. C. D.7.如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④.其中正确的结论有()A.1个 B.2个 C.3个 D.4个8.下列分式是最简分式的是().A. B. C. D.9.下列各式中,最简二次根式是()A. B. C. D.10.实数a在数轴上的位置如图所示,则化简后为()A.8 B.﹣8 C.2a﹣18 D.无法确定二、填空题(每小题3分,共24分)11.通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增长3cm.假设这棵数生长x年其树围才能超过2.4m.列满足x的不等关系:__________________.12.当__________时,分式的值等于零.13.当时,二次根式的值是_________.14.如图,在矩形ABCD中,AD=5,AB=3,点E是边BC上一点,若ED平分∠AEC,则ΔABE的面积为________.15.已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).16.已知一次函数y=mx+n(m≠0)与x轴的交点为(3,0),则方程mx+n=0(m≠0)的解是x=________.17.如图,平行四边形ABCO的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c),则顶点坐标B的坐标为_________.18.已知中,,角平分线BE、CF交于点O,则______.三、解答题(共66分)19.(10分)在平面直角坐标系xOy中,点P在函数y=4x(x>0)的图象上,过P作直线PA⊥x轴于点A,交直线y=x于点M,过M作直线MB⊥y轴于点B.交函数y=(1)若点P的横坐标为1,写出点P的纵坐标,以及点M的坐标;(2)若点P的横坐标为t,①求点Q的坐标(用含t的式子表示)②直接写出线段PQ的长(用含t的式子表示)20.(6分)(1)化简的结果正确的是()A.1B.C.D.(2)先化简,再求值:,其中.21.(6分)计算:(1)(2)22.(8分)甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S(千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少?(2)乙车出发多少分钟后第一次与甲车相遇?(3)甲车中途因故障停止行驶的时间为多少分钟?23.(8分)请把下列证明过程补充完整:已知:如图,DE∥BC,BE平分∠ABC.求证:∠1=∠1.证明:因为BE平分∠ABC(已知),所以∠1=______().又因为DE∥BC(已知),所以∠2=_____().所以∠1=∠1().24.(8分)不解方程组,求的值25.(10分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°.图1①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD;(2)如图2,矩形ABCD的长宽为方程x2-14x+40=0的两根,其中(BC>AB),点E从A点出发,以1个单位每秒的速度向终点D运动;同时点F从C点出发,以2个单位每秒的速度向终点B运动,当点E、F运动过程中使四边形ABFE是等腰直角四边形时,求EF图226.(10分)某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为______,中位数为_______;(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?
参考答案一、选择题(每小题3分,共30分)1、C【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【详解】∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故选C.【点睛】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.2、B【解析】
先求出二次函数图象的对称轴,然后利用二次函数图象的对称性求出图象与x轴的另一个交点坐标,最后根据二次函数与x轴的交点的横坐标与一元二次方程的根的关系即可得出结论.【详解】解:二次函数图象的对称轴为直线x=∵图象与轴的一个交点为,∴图象与x轴的另一个交点坐标为(2,0)∴关于的一元二次方程的两实数根是,故选B【点睛】此题考查的是求二次函数图象与x轴的交点坐标和求一元二次方程的根,掌握二次函数图象的对称性和二次函数与x轴的交点的横坐标与一元二次方程的根的关系是解决此题的关键.3、D【解析】
∵正比例函数且随的增大而减少,在直线中,∴函数图象经过一、三、四象限.故选D.4、B【解析】
解:众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.故选B.5、D【解析】
由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OE≠BE,得出∠BOE≠∠OBC,选项D错误;即可得出结论.【详解】解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,AB∥DC,AB=CD,
又∵点E是BC的中点,
∴OE是△BCD的中位线,
∴OE=DC,OE∥DC,,
∴∠BOE=∠ODC,
∴选项A、B、C正确;
∵OE≠BE,
∴∠BOE≠∠OBC,
∴选项D错误;
故选:D.【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.6、B【解析】
利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.【详解】,,,,,设,则,,可得,解得:,则,故选B.【点睛】本题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键.7、C【解析】试题解析:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故可得出BG+DG=CG,即②也正确;③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;④S△ABD=AB•DE=AB•BE=AB•AB=AB2,即④正确.综上可得①②④正确,共3个.故选C.8、C【解析】A选项中,因为,所以本选项错误;B选项中,因为,所以本选项错误;C选项中,因为的分子与分母没有1之外的公因式,所以本选项正确;D选项中,因为,所以本选项错误;故选C.9、C【解析】
最简二次根式:①被开方数不含有分母(小数);②被开方数中不含有可以开方开得出的因数或因式;【详解】A.,被开方数是分数,不是最简二次根式;B.,被开方数是小数,不是最简二次根式;C.,符合条件,是最简二次根式;D.,被开方数可以开方,不是最简二次根式.故选C【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式的条件.10、A【解析】
先依据a在数轴上的位置确定出a﹣5、a﹣13的正负,然后再依据二次根式的性质、绝对值的性质进行化简即可.【详解】由题意可知6<a<12,∴a﹣5>0、a﹣13<0,∴+=|a﹣5|+|a﹣13|=a﹣5+13﹣a=1.故选A.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.二、填空题(每小题3分,共24分)11、5+3x>240【解析】
因为树栽种时的树围为5cm,以后树围每年增长约3cm,x年后树围将达到(5+3x)cm.
不等关系:x年其树围才能超过2.4m.【详解】根据题意,得5+3x>240.故答案为:5+3x>240.【点睛】本题主要考查由实际问题抽象出一元一次不等式,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.12、-2【解析】
令分子为0,分母不为0即可求解.【详解】依题意得x2-4=0,x-2≠0,解得x=-2,故填:-2.【点睛】此题主要考查分式的值,解题的关键是熟知分式的性质.13、3【解析】
根据题意将代入二次根式之中,然后进一步化简即可.【详解】将代入二次根式可得:,故答案为:3.【点睛】本题主要考查了二次根式的化简,熟练掌握相关方法是解题关键.14、1【解析】
首先根据矩形的性质和角平分线的性质得到EA=DA,从而求得BE,然后利用三角形的面积公式进行计算即可.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=5,CD=AB=3,∴∠CED=∠ADE,∵ED平分∠AEC,∴∠AED=∠CED,∴∠EDA=∠AED,∴AD=AE=5,∴BE=AE2∴△ABE的面积=12BE•AB=12×4×3=故答案为:1.【点睛】本题考查了矩形的性质,勾股定理等,了解矩形的性质是解答本题的关键,难度不大.15、1【解析】
先从图象中获取信息得知A,B两地之间的距离及乙的行驶时间求出乙车的速度,然后再根据两车的相遇时间求出甲的速度,然后求出甲车行完全程的时间,就可以算出此时乙车的行驶时间,用总时间减去甲行完全程时的时间求出乙车剩下的时间,再乘以乙车的速度即可求出路程.【详解】由图象可知,A、B两地相距990千米,而乙来回用时22小时,因此乙车的速度为:990÷(22÷2)=90千米/小时,甲乙两车在C地相遇后,甲休息0.5小时,乙继续走,所以乙车出发7小时后两车相遇,因此甲车速度为:(990﹣90×7)÷(7﹣1)=60千米/小时,甲车行完全程的时间为:990÷60=16.5小时,此时乙车已经行驶16.5+0.5+1=18小时,因此乙车距B地还剩22﹣18=4小时的路程,所以当甲车到达B地时,乙车距离B地的距离为90×4=1千米,故答案为:1.【点睛】本题主要考查一次函数的应用,能够从图象中获取有用信息并掌握行程问题的解法是解题的关键.16、1【解析】
直接根据函数图象与x轴的交点进行解答即可.【详解】∵一次函数y=mx+n与x轴的交点为(1,0),∴当mx+n=0时,x=1.故答案为:1.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.17、(a+b,c)【解析】
平行四边形的对边相等,B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,从而确定B点的坐标.【详解】∵四边形ABCO是平行四边形,∴AO=BC,AO∥BC,∴B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,∵O,A,C的坐标分别是(0,0),(a,0),(b,c),∴B点的坐标为(a+b,c).故答案是:(a+b,c).【点睛】本题考查平行四边形的性质,平行四边形的对边相等,以及考查坐标与图形的性质等知识点.18、【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.三、解答题(共66分)19、(1)点P的纵坐标为4,点M的坐标为(1,1);(2)①4t,t【解析】
(1)直接将点P的横坐标代入y=4x(x>0)中,得到点P的纵坐标,由点M在PA上,PA⊥x(2)①由点P的横坐标为t,得到M的横坐标为t,因为M在y=x上,得到M的坐标为(t,t),从而得到Q的纵坐标,代入反比例函数解析式即可的到点Q的坐标;②连接PQ,很快就发现PQ是直角三角形PMQ的斜边,直接利用勾股定理即可得到答案.【详解】解:
(1)∵点P在函数y=4x(x>0)的图象上,点P∴y=4∴点P的纵坐标为4,∵点M在PA上,PA⊥x轴,且点P的横坐标为1,∴点M的横坐标为1,又∵点M在直线y=x上,∴点M的坐标为(1,1),故答案为点P的纵坐标为4,点M的坐标为(1,1);(2)①∵点P的横坐标为t,点P在函数y=4∴点P的坐标为t,4∵直线PA⊥x轴,交直线y=x于点M,∴点M的坐标为(t,t),
∵直线MB⊥y轴,交函数y=4x(x>0)的图象于点Q,
∴点Q②连接PQ,∵P的坐标为t,4t,M的坐标为(t,t),Q的坐标为∴PM=4t-t,MQ=∴PQ=PM故答案为线段PQ的长为2t-【点睛】本题考查的知识点是正比例函数的图像和性质,反比例函数的图像和性质,反比例函数的应用,平面直角坐标系中点的坐标,点到坐标及其原点的距离和勾股定理的应用,掌握好正比例函数与反比例函数的点的坐标特征是解题的关键.20、(1)C;(2)a+2|a-3|.2025【解析】
(1)先运用完全平方公式将被开方数写成(1-a),再利用二次根式的性质=|a|化简即可.(2)先利用完全平方公式进行化简,再把a的值代入【详解】解:(1)故选C(2)原式=2a+2=2a+2|a-3|.因为a=-2019,所以a-3=-2022<0.所以原式=2a-2(a-3)=1.当a=-2019时,原式=1.【点睛】此题考查二次根式的化简求值,解题关键在于掌握运算法则21、(1);(2).【解析】
(1)先化简每个二次根式,再合并同类二次根式即得结果;(2)先按照完全平方公式展开,再合并、化简即可.【详解】解:(1)==;(2)=.【点睛】本题考查了二次根式的混合运算,对于二次根式的混合运算,一般先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,最后合并同类二次根式.22、(1)甲车的速度是千米每分钟,乙车的速度是1千米每分钟;(2)乙车出发20分钟后第一次与甲车相遇;(3)甲车中途因故障停止行驶的时间为25分钟.【解析】
(1)分别根据速度=路程÷时间列式计算即可得解;(2)设甲车离A地的距离S与时间t的函数解析式为s=kt+b(k≠0),利用待定系数法求出乙函数解析式,再令s=20求出相应的t的值,然后求解即可;(3)求出甲继续行驶的时间,然后用总时间减去停止前后的时间,列式计算即可得解.【详解】解:(千米/分钟),∴甲车的速度是千米每分钟.(千米/分钟),∴乙车的速度是1千米每分钟.(2)设甲车离A地的距离S与时间t的函数解析式为:()将点(10,0)(70,60)代入得:解得:,即当y=20时,解得t=30,∵甲车出发10分钟后乙车才出发,∴30-10=20分钟,乙车出发20分钟后第一次与甲车相遇.(3)∵(分钟)∵70-30-15=25(分钟),∴甲车中途因故障停止行驶的时间为25分钟.23、∠2;角平分线的定义;∠1;两直线平行,同位角相等;等量代换.【解析】利用角平分线的定义和平行线的性质填空24、6.【解析】
应把所给式子进行因式分解,整理为与所给等式相关的式子,代入求值即可.【详解】原式=∴原式=【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.25、(1)①BD=2;②证明见详解;(2)25或【解析】
(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)先解方程,求出AB和BC的长度,然后根据题意,讨论当AB=AE,或AB=BF时,四边形ABFE是等腰直角四边形.当AB=AE=4时,连接EF,过F作FG⊥AE,交AE于点G,可得运动的时间为4s,可得CF=8,然后得到GE=2,利用勾股定理得到EF的长度;当AB=BF=4时,连接EF,过点E作EH⊥BF,交BF于点H,可得CF=6,运动的时间为3s,可得AE=3,然后得到FH=1,利用勾股定理求得EF的长度.【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共绿地草坪改造合同
- 文化创意公司文员劳动合同模板
- 医院周边道路施工合同范本
- 办公大楼雨污改造工程合同
- 教育培训招投标政策解读
- 大学校园照明系统施工协议
- 污水处理泵机租赁合同
- 南京市果园租赁合同
- 农村宅基地租赁协议格式及详解
- 城市轨道交通配套道路改造合同
- 2024年时事政治试题【带答案】
- 期中测试卷(1-4单元)(试题)-2024-2025学年人教版数学六年级上册
- 前程无忧行测笔试题库
- 中华民族发展史智慧树知到期末考试答案章节答案2024年云南大学
- 2024春期国开电大法学本科《国际法》在线形考(形考任务1至5)试题及答案
- 初中物理光学难题难度含解析答案
- 冷却塔技术规格书
- 30题纪检监察位岗位常见面试问题含HR问题考察点及参考回答
- 中国古代文学史(全套)课件
- 黑布林-Peter-Pan-中英双语阅读
- 《小儿推拿》PPT课件(完整版)
评论
0/150
提交评论