




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年山东省中考数学真题分类汇编:方程与不等式一.选择题(共14小题)1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5 B.﹣1<x≤1 C.﹣1≤x<1 D.﹣1<x≤52.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1 B.2 C.3 D.43.(2021•威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A. B. C. D.4.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4 B.0或4 C.﹣2或0 D.﹣2或25.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n的值等于()A.2019 B.2020 C.2021 D.20226.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1 B.k≥且k≠1 C.k D.k≥7.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A. B. C. D.8.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12 B.﹣=0.2 C.﹣=12 D.﹣=0.29.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定10.(2021•菏泽)如果不等式组的解集为x>2,那么m的取值范围是()A.m≤2 B.m≥2 C.m>2 D.m<211.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8 B.x1=7,x2=﹣8 C.x1=﹣7,x2=8 D.x1=﹣7,x2=﹣812.(2021•临沂)某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为()A.=+ B.+= C.+= D.=+13.(2021•泰安)已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣ B.k< C.k>﹣且k≠0 D.k<且k≠014.(2021•济宁)不等式组的解集在数轴上表示正确的是()A. B. C. D.二.填空题(共7小题)15.(2021•烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.16.(2021•东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米,则所列方程为.17.(2021•泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.18.(2021•枣庄)若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n的值为.19.(2021•枣庄)已知x,y满足方程组,则x+y的值为.20.(2021•枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.21.(2021•东营)不等式组的解集为.三.解答题(共6小题)22.(2021•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.23.(2021•淄博)为更好地发展低碳经济,建设美丽中国.某公司对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司去年第三季度产值是2300万元,今年第一季度产值是3200万元,假设公司每个季度产值的平均增长率相同.科学计算器按键顺序计算结果(已取近似值)解答过程中可直接使用表格中的数据哟!1.181.391.64(1)求该公司每个季度产值的平均增长率;(2)问该公司今年总产值能否超过1.6亿元?并说明理由.24.(2021•威海)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?25.(2021•菏泽)列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?26.(2021•泰安)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?27.(2021•烟台)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?
2021年山东省中考数学真题分类汇编:方程与不等式参考答案与试题解析一.选择题(共14小题)1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5 B.﹣1<x≤1 C.﹣1≤x<1 D.﹣1<x≤5【考点】一元一次方程的解;不等式的性质.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;运算能力.【分析】把a看做已知数求出方程的解得到x的值,由﹣3<a≤3代入计算即可.【解答】解:x+a=2,x=﹣a+2,∵﹣3<a≤3,∴﹣3≤﹣a<3,∴﹣1≤﹣a+2<5,∴﹣1≤x<5,故选:A.【点评】此题考查了解一元一次等式、一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1 B.2 C.3 D.4【考点】不等式的性质.【专题】整式;推理能力.【分析】根据不等式的性质逐个判断即可.【解答】解:∵a>b,∴当a>0时,a2>ab,当a<0时,a2<ab,故①结论错误;∵a>b,∴当|a|>|b|时,a2>b2,当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴,故④结论正确;∴正确的个数是1个.故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.(2021•威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求解不等式①和②,即可求出不等式组的解集,再在数轴上表示出不等式组的解集即可得出答案.【解答】解:解不等式①,得x>﹣3;解不等式②,得x≤﹣1.∴不等式组的解集为:﹣3<x≤﹣1.∴不等式组的解集在数轴上表示为:.故选:A.【点评】本题主要考查了在数轴上表示不等式的解集,熟练应用求不等式组的解集的方法及在数轴上表示的方法进行求解是解决本题的关键.4.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4 B.0或4 C.﹣2或0 D.﹣2或2【考点】一元二次方程的解.【专题】一元二次方程及应用;运算能力.【分析】直接把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,然后解关于k的一元二次方程即可.【解答】解:把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,整理得k2﹣4k=0,解得k1=0,k2=4,即k的值为0或4.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n的值等于()A.2019 B.2020 C.2021 D.2022【考点】根与系数的关系.【专题】一元二次方程及应用;运算能力.【分析】根据一元二次方程根的定义得到m2+m=2021,则m2+2m+n=2021+m+n,再利用根与系数的关系得到m+n=﹣1,然后利用整体代入的方法计算.【解答】解:∵m是一元二次方程x2+x﹣2021=0的实数根,∴m2+m﹣2021=0,∴m2+m=2021,∴m2+2m+n=m2+m+m+n=2021+m+n,∵m,n是一元二次方程x2+x﹣2021=0的两个实数根,∴m+n=﹣1,∴m2+2m+n=2021﹣1=2020.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.6.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1 B.k≥且k≠1 C.k D.k≥【考点】一元二次方程的定义;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】分k﹣1=0和k﹣1≠0两种情况,利用根的判别式求解可得.【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴△=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k≥;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k≥,故选:D.【点评】本题主要考查根的判别式和一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.7.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得其解集,继而表示在数轴上即可.【解答】解:去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数,不等号方向要改变.8.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12 B.﹣=0.2 C.﹣=12 D.﹣=0.2【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据时间=路程÷速度结合甲比乙提前12分钟走完全程,即可得出关于x的分式方程,此题得解.【解答】解:12分钟=h=0.2h,设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据题意,得:﹣=0.2,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定【考点】实数与数轴;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】先由数轴得出m,n与0的关系,再计算判别式的值即可判断.【解答】解:由数轴得m>0,n<0,m+n<0,∴mn<0,∴△=(mn)2﹣4(m+n)>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(2021•菏泽)如果不等式组的解集为x>2,那么m的取值范围是()A.m≤2 B.m≥2 C.m>2 D.m<2【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】解第一个不等式,求出解集,再根据不等式组的解集,利用“同大取大”的口诀可得答案.【解答】解:解不等式x+5<4x﹣1,得:x>2,∵不等式组的解集为x>2,∴m≤2,故选:A.【点评】本题主要考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的步骤和依据及不等式组解集的确定.11.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8 B.x1=7,x2=﹣8 C.x1=﹣7,x2=8 D.x1=﹣7,x2=﹣8【考点】解一元二次方程﹣因式分解法.【专题】一元二次方程及应用;运算能力.【分析】利用因式分解法求解即可。【解答】解:∵x2﹣x=56,∴x2﹣x﹣56=0,则(x﹣8)(x+7)=0,∴x﹣8=0或x+7=0,解得x1=﹣7,x2=8,故选:C.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.12.(2021•临沂)某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为()A.=+ B.+= C.+= D.=+【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】若设A型扫地机器人每小时清扫xm2,则B型扫地机器人每小时清扫(1+50%)xm2,根据“清扫100m2所用的时间A型机器人比B型机器人多用40分钟”列出方程,此题得解.【解答】解:若设A型扫地机器人每小时清扫xm2,则B型扫地机器人每小时清扫(1+50%)xm2,根据题意,得=+.故选:D.【点评】本题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.13.(2021•泰安)已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣ B.k< C.k>﹣且k≠0 D.k<且k≠0【考点】一元二次方程的定义;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(2k﹣1)2﹣4k•(k﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(2k﹣1)2﹣4k•(k﹣2)>0,解得k>﹣且k≠0.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.(2021•济宁)不等式组的解集在数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.【解答】解:,解不等式①,得x≥﹣1,解不等式②,得x<3,所以不等式组的解集是﹣1≤x<3,在数轴上表示出来为:,故选:B.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.二.填空题(共7小题)15.(2021•烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为2.【考点】数学常识;一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】利用幻方中每一横行,每一竖行以及两条对角线上的数字之和都是15,可求出幻方右下角及第二行中间的数字,再利用幻方中对角线上的数字之和为15,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:幻方右下角的数字为15﹣8﹣3=4,幻方第二行中间的数字为15﹣6﹣4=5.依题意得:8+5+a=15,解得:a=2.故答案为:2.【点评】本题考查了一元一次方程的应用以及数字常识,找准等量关系,正确列出一元一次方程是解题的关键.16.(2021•东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米,则所列方程为﹣=30.【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设原计划每天绿化的面积为x万平方米,则实际每天绿化的面积为(1+25%)x万平方米,根据工作时间=工作总量÷工作效率,结合实际比原计划提前30天完成了任务,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每天绿化的面积为x万平方米,则实际每天绿化的面积为(1+25%)x万平方米,依题意得:﹣=30.故答案为:﹣=30.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.17.(2021•泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50和题目中所设的未知数,可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是找出题目中的等量关系,列出相应的方程组.18.(2021•枣庄)若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n的值为8或9.【考点】一元二次方程的解;根的判别式;三角形三边关系;等腰三角形的性质.【专题】一元二次方程及应用;等腰三角形与直角三角形;运算能力.【分析】当4为腰长时,将x=4代入原一元二次方程可求出n的值,将n值代入原方程可求出方程的解,利用较小两边之和大于第三边可得出n=8符合题意;当4为底边长时,利用等腰三角形的性质可得出根的判别式△=0,解之可得出n值,将n值代入原方程可求出方程的解,利用较小两边之和大于第三边可得出n=9符合题意.【解答】解:当4为腰长时,将x=4代入x2﹣6x+n=0,得:42﹣6×4+n=0,解得:n=8,当n=8时,原方程为x2﹣6x+8=0,解得:x1=2,x2=4,∵2+4>4,∴n=8符合题意;当4为底边长时,关于x的方程x2﹣6x+n=0有两个相等的实数根,∴△=(﹣6)2﹣4×1×n=0,解得:n=9,当n=9时,原方程为x2﹣6x+9=0,解得:x1=x2=3,∵3+3=6>4,∴n=9符合题意.∴n的值为8或9.故答案为:8或9.【点评】本题考查了根的判别式、一元二次方程的解、等腰三角形的性质、三角形三边关系以及根与系数的关系,分4为腰长及4为底边长两种情况讨论是解题的关键.19.(2021•枣庄)已知x,y满足方程组,则x+y的值为﹣2.【考点】二元一次方程组的解;解二元一次方程组.【专题】计算题;运算能力.【分析】用加减消元法解二元一次方程组,然后求解.【解答】解:方法一:,①﹣②,得:2x+2y=﹣4,∴x+y=﹣2,故答案为:﹣2.方法二:,②×2,得:4x+2y=6③,①﹣③,得:y=﹣7,把y=﹣7代入②,得2x﹣7=3,解得:x=5,∴方程组的解为,∴x+y=﹣2,故答案为:﹣2.【点评】本题考查解二元一次方程组,掌握消元法解方程组的步骤,利用整体思想解题是关键.20.(2021•枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为1.【考点】数学常识;一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】根据幻方的定义,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:依题意,得:6+m+8=15,解得:m=1.故答案为:1.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(2021•东营)不等式组的解集为﹣1≤x<2.【考点】解一元一次不等式组.【专题】计算题;一元一次不等式(组)及应用.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:解不等式﹣≤1,得:x≥﹣1,解不等式5x﹣1<3(x+1),得:x<2,则不等式组的解集为﹣1≤x<2,故答案为:﹣1≤x<2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三.解答题(共6小题)22.(2021•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】(1)设亩产量的平均增长率为x,根据第三阶段水稻亩产量=第一阶段水稻亩产量×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用第四阶段水稻亩产量=第三阶段水稻亩产量×(1+增长率),可求出第四阶段水稻亩产量,将其与1200公斤比较后即可得出结论.【解答】解:(1)设亩产量的平均增长率为x,依题意得:700(1+x)2=1008,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:亩产量的平均增长率为20%.(2)1008×(1+20%)=1209.6(公斤).∵1209.6>1200,∴他们的目标能实现.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.(2021•淄博)为更好地发展低碳经济,建设美丽中国.某公司对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司去年第三季度产值是2300万元,今年第一季度产值是3200万元,假设公司每个季度产值的平均增长率相同.科学计算器按键顺序计算结果(已取近似值)解答过程中可直接使用表格中的数据哟!1.181.391.64(1)求该公司每个季度产值的平均增长率;(2)问该公司今年总产值能否超过1.6亿元?并说明理由.【考点】近似数和有效数字;计算器—基础知识;一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】(1)设该公司每个季度产值的平均增长率为x,利用今年第一季度产值=去年第三季度产值×(1+增长率)2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论;(2)将今年四个季度的产值相加,即可求出该公司今年总产值,再将其与1.6亿元比较后即可得出结论.【解答】解:(1)设该公司每个季度产值的平均增长率为x,依题意得:2300(1+x)2=3200,解得:x1=0.18=18%,x2=﹣2.18(不合题意,舍去).答:该公司每个季度产值的平均增长率为18%.(2)该公司今年总产值能超过1.6亿元,理由如下:3200+3200×(1+18%)+3200×(1+18%)2+3200×(1+18%)3=3200+3200×1.18+3200×1.39+3200×1.64=3200+3776+4448+5248=16672(万元),1.6亿元=16000万元,∵16672>16000,∴该公司今年总产值能超过1.6亿元.【点评】本题考查了一元二次方程的应用、近似数和有效数字以及计算器﹣基础知识,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)将今年四个季度的产值相加,求出该公司今年总产值.24.(2021•威海)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?【考点】分式方程的应用.【专题】销售问题;运算能力.【分析】(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据等量关系,列出分式方程,即可求解;(2)根据总利润=总售价﹣总成本,列出算式,即可求解.【解答】解:(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据题意得:,解得:x=50,经检验:x=50是方程的解,且符合题意,答:第一次每件的进价为50元;(2)70×()﹣3000×2=1700(元),答:两次的总利润为1700元.【点评】本题主要考查分式方程的实际应用,找准等量关系,列出分式方程,是解题的关键.25.(2021•菏泽)列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?【考点】一元二次方程的应用.【专题】应用题;一元二次方程及应用;运算能力;应用意识.【分析】设降低x元,超市每天可获得销售利润3640元,由题意列出一元二次方程,解之即可得出答案.【解答】解:设降低x元,超市每天可获得销售利润3640元,由题意得,(38﹣x﹣22)(160+×120)=3640,整理得x2﹣12x+27=0,∴x=3或x=9.∵要尽可能让顾客得到实惠,∴x=9,∴售价为38﹣9=29元/千克.答:水果的销售价为每千克29元时,超市每天可获得销售利润3640元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度文化产业产权转让与市场推广合同
- 2025年度委托收款与新能源项目合作合同
- 2025年度乙方转丙方特许经营合同模板
- 2025年度家居装修工人安全责任免除协议书
- 2025年度电影演员档期聘用合同
- 2025年度土地承包经营权流转与农村电商合作合同
- 2025年度危重病人治疗免责协议书(特定医疗机构版)
- 2025年度文化产业发展自愿退股及项目运营合同模板
- 2025年度养老机构委托管理及运营合作协议范本
- 信访接待室改造工程合同
- 优秀员工荣誉证书模板
- 仁爱版八年级英语上复习课Unit 2 Keep Healthy Topic1 2教学课件
- 三维电生理导航系统技术参数
- 三年级下册科学活动手册
- 《交通工程CAD》课程教学大纲(本科)
- 人教版数学五年级下册 全册各单元教材解析
- 换班申请表(标准模版)
- 者阴村战友纪念者阴山对越自卫还击作战30周年联谊会计划2
- 基于单片机的电子广告牌设计毕业设计论文
- 承插型盘扣式支模架专项施工方案
- 我国古代职业教育的发展
评论
0/150
提交评论