版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年四川省中考数学真题分类汇编:函数一.选择题(共6小题)1.(2021•广安)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y12.(2021•广安)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0,②4a﹣2b+c<0,③a﹣b≥x(ax+b),④3a+c<0,正确的有()A.1个 B.2个 C.3个 D.4个3.(2021•雅安)定义:min{a,b}=,若函数y=min{x+1,﹣x2+2x+3},则该函数的最大值为()A.0 B.2 C.3 D.44.(2021•眉山)在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣55.(2021•广元)将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为()A.或﹣3 B.或﹣3 C.或﹣3 D.或﹣36.(2021•资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为()A.﹣4≤a<﹣ B.﹣4≤a≤﹣ C.﹣≤a<0 D.﹣<a<0二.填空题(共5小题)7.(2021•凉山州)函数y=中,自变量x的取值范围是8.(2021•眉山)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是.9.(2021•达州)如图是一个运算程序示意图,若开始输入x的值为3,则输出y值为.10.(2021•广元)如图,点A(﹣2,2)在反比例函数y=的图象上,点M在x轴的正半轴上,点N在y轴的负半轴上,且OM=ON=5.点P(x,y)是线段MN上一动点,过点A和P分别作x轴的垂线,垂足为点D和E,连接OA、OP.当S△OAD<S△OPE时,x的取值范围是.11.(2021•南充)关于抛物线y=ax2﹣2x+1(a≠0),给出下列结论:①当a<0时,抛物线与直线y=2x+2没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),则a≥1.其中正确结论的序号是.三.解答题(共5小题)12.(2021•雅安)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.(1)求y与x之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?13.(2021•宜宾)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于点A、B,与x轴交于点C(5,0),若OC=AC,且S△OAC=10.(1)求反比例函数与一次函数的表达式;(2)请直接写出不等式ax+b>的解集.14.(2021•广元)如图,直线y=kx+2与双曲线y=相交于点A、B,已知点A的横坐标为1.(1)求直线y=kx+2的解析式及点B的坐标;(2)以线段AB为斜边在直线AB的上方作等腰直角三角形ABC.求经过点C的双曲线的解析式.15.(2021•广元)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.16.(2021•雅安)已知二次函数y=x2+2bx﹣3b.(1)当该二次函数的图象经过点A(1,0)时,求该二次函数的表达式;(2)在(1)的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;(3)若对满足x≥1的任意实数x,都使得y≥0成立,求实数b的取值范围.
2021年四川省中考数学真题分类汇编:函数参考答案与试题解析一.选择题(共6小题)1.(2021•广安)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y1【考点】反比例函数的性质.【专题】反比例函数及其应用;符号意识.【分析】先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵反比例函数中k<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣3<0,﹣1<0,∴点A(﹣3,y1),B(﹣1,y2)位于第二象限,∴y1>0,y2>0,∵﹣3<﹣1<0,∴0<y1<y2.∵2>0,∴点C(2,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故选:A.【点评】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.2.(2021•广安)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0,②4a﹣2b+c<0,③a﹣b≥x(ax+b),④3a+c<0,正确的有()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系;二次函数与不等式(组).【专题】二次函数图象及其性质;模型思想.【分析】根据抛物线的开口方向,对称轴,与y轴交点可得a,b,c的符号,从而判断①;再根据二次函数的对称性,与x轴的交点可得当x=﹣2时,y>0,可判断②;再根据x=﹣1时,y取最大值可得a﹣b+c≥ax2+bx+c,从而判断③;最后根据x=1时,y=a+b+c,结合b=2a,可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣1,即,∴b=2a,则b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;∵抛物线对称轴为直线x=﹣1,与x轴的一个交点横坐标在0和1之间,则与x轴的另一个交点在﹣2和﹣3之间,∴当x=﹣2时,y=4a﹣2b+c>0,故②错误;∵x=﹣1时,y=ax2+bx+c的最大值是a﹣b+c,∴a﹣b+c≥ax2+bx+c,∴a﹣b≥ax2+bx,即a﹣b≥x(ax+b),故③正确;∵当x=1时,y=a+b+c<0,b=2a,∴a+2a+c=3a+c<0,故④正确;故选:C.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).3.(2021•雅安)定义:min{a,b}=,若函数y=min{x+1,﹣x2+2x+3},则该函数的最大值为()A.0 B.2 C.3 D.4【考点】一次函数的性质;二次函数的性质.【专题】二次函数图象及其性质;推理能力.【分析】根据题意画出函数图象,通过数形结合求解.【解答】解:x+1=﹣x2+2x+3,解得x=﹣1或x=2.∴y=,把x=2代入y=x+1得y=3,∴函数最大值为y=3.故选:C.【点评】本题考查二次函数与一次函数的综合应用,解题关键是熟练掌握不等式与函数的关系.4.(2021•眉山)在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣5【考点】二次函数图象上点的坐标特征;二次函数图象与几何变换.【专题】二次函数图象及其性质;运算能力.【分析】由抛物线解析式求得抛物线的顶点坐标与点C的坐标,然后结合中心对称的性质,求得新抛物线顶点坐标,易得抛物线解析式.【解答】解:由抛物线y=x2﹣4x+5=(x﹣2)²+1知,抛物线顶点坐标是(2,1).由抛物线y=x2﹣4x+5知,C(0,5).∴抛物线y=﹣x2﹣4x+5的顶点坐标是(﹣2,9).∴该抛物线关于点C成中心对称的抛物线的表达式为:y=﹣(x+2)²+9=﹣x²﹣4x+5.故选:A.【点评】本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,表示出新抛物线的顶点坐标是解题的关键.5.(2021•广元)将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为()A.或﹣3 B.或﹣3 C.或﹣3 D.或﹣3【考点】一次函数的性质;一次函数图象上点的坐标特征;二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点.【专题】二次函数图象及其性质;平移、旋转与对称;推理能力.【分析】分两种情形:如图,当直线y=x+b过点B时,直线y=x+b与该新图象恰好有三个公共点,当直线y=x+b与抛物线y=(x﹣1)2﹣4(﹣3≤x≤1)相切时,直线y=x+b与该新图象恰好有三个公共点,分别求解即可.【解答】解:二次函数解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),B(3,0),把抛物线y=﹣x2+2x+3图象x轴上方的部分沿x轴翻折到x轴下方,则翻折部分的抛物线解析式为y=(x﹣1)2﹣4(﹣1≤x≤3),顶点坐标M(1,﹣4),如图,当直线y=x+b过点B时,直线y=x+b与该新图象恰好有三个公共点,∴3+b=0,解得b=﹣3;当直线y=x+b与抛物线y=(x﹣1)2﹣4(﹣3≤x≤1)相切时,直线y=x+b与该新图象恰好有三个公共点,即(x﹣1)2﹣4=x+b有相等的实数解,整理得x2﹣3x﹣b﹣3=0,△=32﹣4(﹣b﹣3)=0,解得b=﹣,所以b的值为﹣3或﹣,故选:A.【点评】此题主要考查了翻折的性质,一元二次方程根的判别式,抛物线的性质,确定翻折后抛物线的关系式;利用数形结合的方法是解本题的关键,画出函数图象是解本题的难点.6.(2021•资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为()A.﹣4≤a<﹣ B.﹣4≤a≤﹣ C.﹣≤a<0 D.﹣<a<0【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;推理能力.【分析】如图,由题意,抛物线的开口向下,a<0.求出抛物线经过点A时a的值即可.【解答】解:如图,由题意,抛物线的开口向下,a<0.当抛物线y=a(x﹣1)2+2经过点A(3,﹣4)时,﹣4=4a+2,∴a=﹣,观察图象可知,当抛物线与线段AB没有交点或经过点A时,满足条件,∴﹣≤a<0.故选:C.【点评】本题考查二次函数的图象与系数的关系,二次函数图象上点的坐标特征等知识,解题的关键是学会寻找特殊点解决问题,属于选择题中的压轴题.二.填空题(共5小题)7.(2021•凉山州)函数y=中,自变量x的取值范围是x≥﹣3且x≠0【考点】分式有意义的条件;二次根式有意义的条件;函数自变量的取值范围.【专题】计算题.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0列不等式组求解.【解答】解:根据题意得:,解得x≥﹣3且x≠0.故答案为x≥﹣3且x≠0.【点评】本题考查了函数自变量的取值范围.考查的知识点为:分式有意义,分母不为0,二次根式有意义,被开方数是非负数.8.(2021•眉山)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是a<﹣.【考点】一次函数图象与系数的关系.【专题】一次函数及其应用;运算能力.【分析】先根据一次函数的性质得出关于a的不等式2a+3<0,再解不等式即可求出a的取值范围.【解答】解:∵一次函数y=(2a+3)x+2的值随x值的增大而减少,∴2a+3<0,解得a<﹣.故答案为:a<﹣.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.9.(2021•达州)如图是一个运算程序示意图,若开始输入x的值为3,则输出y值为2.【考点】函数值.【专题】函数及其图象;运算能力;推理能力.【分析】将x=3代入y=|x|﹣1(x≤4)求解.【解答】解:∵3<4,∴把x=3代入y=|x|﹣1得y=3﹣1=2,故答案为2.【点评】本题考查函数值,解题关键是找到正确计算x=3的解析式.10.(2021•广元)如图,点A(﹣2,2)在反比例函数y=的图象上,点M在x轴的正半轴上,点N在y轴的负半轴上,且OM=ON=5.点P(x,y)是线段MN上一动点,过点A和P分别作x轴的垂线,垂足为点D和E,连接OA、OP.当S△OAD<S△OPE时,x的取值范围是1<x<4.【考点】反比例函数的性质;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;等腰三角形的性质.【专题】数形结合;反比例函数及其应用;运算能力.【分析】利用点A(﹣2,2)在反比例函数y=的图象上,可得反比例函数的解析式为y=;过点B作BF⊥ON于F,连接OB,过点C作CG⊥OM于点G,连接OC,易知S△OAD=S△OBF=S△OCG=2,因此从图中可以看出当点P在线段BC上时,满足S△OAD<S△OPE;用待定系数法求得直线MN的解析式,再与反比例函数解析式联立,求出B,C的坐标,x的取值范围可得.【解答】解:过点B作BF⊥ON于F,连接OB,过点C作CG⊥OM于点G,连接OC,如图,∵点A(﹣2,2)在反比例函数y=的图象上,∴k=﹣4.∴y=.∵点A(﹣2,2),∴AD=OD=2.∴.设B(a,b),则ab=﹣4,OF=﹣b,BF=a.∴==2.同理:S△OCG=2.从图中可以看出当点P在线段BC上时,S△OPE>S△OBF,即当点P在线段BC上时,满足满足S△OAD<S△OPE.∵OM=ON=5,∴N(0,﹣5),M(5,0).设直线MN的解析式为y=mx+n,则:,解得:.∴直线MN的解析式为y=x﹣5.∴,解得:,.∴B(1,﹣4),C(4,﹣1).∴x的取值范围为1<x<4.【点评】本题主要考查了反比例函数比例系数k的几何意义,反比例函数的性质,待定系数法,反比例函数图象上点的坐标的特点.利用点的坐标表示出相应线段的长度是解题的关键,利用数形结合的方法可使问题简单明了.11.(2021•南充)关于抛物线y=ax2﹣2x+1(a≠0),给出下列结论:①当a<0时,抛物线与直线y=2x+2没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),则a≥1.其中正确结论的序号是②③.【考点】一次函数的性质;一次函数图象上点的坐标特征;二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】二次函数图象及其性质;推理能力.【分析】①构建方程组,转化为一元二次方程,利用判别式的值判断即可.②首先证明a>1,再证明x=1时,y<0,可得结论.③首先证明a>0,再根据顶点在x轴上或x轴的上方,在点(0,1)的下方,可得不等式组1>≥0,由此可得结论.【解答】解:由,消去y得到,ax2﹣4x﹣1=0,∵△=16+4a,a<0,∴△的值可能大于0,∴抛物线与直线y=2x+2可能有交点,故①错误.∵抛物线与x轴有两个交点,∴△=4﹣4a>0,∴a<1,∵抛物线经过(0,1),且x=1时,y=a﹣1<0,∴抛物线与x轴的交点一定在(0,0)与(1,0)之间.故②正确,∵抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),∴2≥﹣>0且2≥≥0,解得,a≥1,故③正确,故答案为:②③.【点评】本题考查抛物线与x轴的交点,一次函数的性质,二次函数的性质等知识,解题的关键是学会构建不等式或不等式组解决问题,属于中考填空题中的压轴题.三.解答题(共5小题)12.(2021•雅安)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶.(1)求y与x之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大,最大利润是多少元?【考点】待定系数法求一次函数解析式;二次函数的应用.【专题】待定系数法;一次函数及其应用;二次函数图象及其性质;应用意识.【分析】(1)根据给定的数据,利用待定系数法即可求出y与x之间的函数关系式;(2)利用销售该消毒液每天的销售利润=每瓶的销售利润×每天的销售量,即可得出w关于x的函数关系式,再利用二次函数的性质即可解决最值问题.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),将(12,90),(15,75)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣5x+150(10≤x≤21,且x为整数).(2)依题意得:w=(x﹣10)(﹣5x+150)=﹣5x2+200x﹣1500=﹣5(x﹣20)2+500.∵﹣5<0,∴当x=20时,w取得最大值,最大值为500.答:当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大利润是500元.【点评】本题考查了待定系数法求一次函数解析式以及二次函数的应用,解题的关键是:(1)根据给定的数据,利用待定系数法求出y与x之间的函数关系式;(2)根据各数量之间的关系,找出w关于x的函数关系式.13.(2021•宜宾)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于点A、B,与x轴交于点C(5,0),若OC=AC,且S△OAC=10.(1)求反比例函数与一次函数的表达式;(2)请直接写出不等式ax+b>的解集.【考点】反比例函数与一次函数的交点问题.【专题】方程思想;待定系数法;运算能力.【分析】(1)因为C(5,0),所以OC=5,又S△AOC=10,过A作AE⊥x轴于E,可以得到AE=4,在直角三角形中,利用勾股定理,求出CE长度,写出E点坐标,即可求出k和C的坐标,利用待定系数法,求解一次函数的表达式即可;(2)联立一次函数和反比例函数的解析式,求解一个方程组,得到交点A和B的坐标,根据图像,可以得到原不等式的解集.【解答】(1)如图1,过A作AE⊥x轴于E,∵C(5,0),OC=AC,∴OC=AC=5,∵S△AOC=10,∴,∴AE=4,在Rt△ACE中,CE=,∴OE=8,∴A(8,4),∴k=4×8=32,将A和C的坐标代入到一次函数解析式中得,,∴,∴反比例函数的表达式为y=,一次函数的表达式为;(2)联立两个函数解析式得,解得,,∴,由图像可得,当,x>8或﹣3<x<0.【点评】此题是反比例函数与一次函数交点问题,根据题意列出方程即可解决问题,同时,还考查了用数形结合思想解不等式.14.(2021•广元)如图,直线y=kx+2与双曲线y=相交于点A、B,已知点A的横坐标为1.(1)求直线y=kx+2的解析式及点B的坐标;(2)以线段AB为斜边在直线AB的上方作等腰直角三角形ABC.求经过点C的双曲线的解析式.【考点】反比例函数综合题.【专题】综合题;推理能力.【分析】(1)将点A的横坐标代入双曲线的解析式中,求出点A的纵坐标,在将点A的坐标代入直线AB的解析式中,求出k,最后联立直线AB的解析式和双曲线的解析式,得出方程组求解,即可得出点B的坐标;(2)过点A作x轴的垂线,过点B作y轴的垂线,两线相交于点F,过点C作CD⊥AF,交AF于D,过点C作CE⊥BF于E,得出∠DCE=90°,进而判断出∠ACD=∠BCE,即可利用AAS判断出△ACD≌△BCE,得出AD=BE,CD=CE,设点C(m,n),求出AD=n﹣,CD=m﹣1,BE=3﹣m,CE=n﹣,进而建立方程组求解得出点C的坐标,即可得出结论.【解答】解:(1)∵点A在双曲线y=上,且点A的横坐标为1,∴点A的纵坐标为=,∴点A(1,),∵点A(1,)在直线y=kx+2上,∴k+2=,∴,∴直线AB的解析式为y=﹣x+2,联立直线AB和双曲线的解析式得,,解得,(点A的纵横坐标)或,∴B(3,);(2)如图,过点A作x轴的垂线,过点B作y轴的垂线,两线相交于点F,过点C作CD⊥AF,交AF于D,过点C作CE⊥BF于E,∴∠D=∠F=∠CEF=∠CEB=90°,∴四边形CDFE是矩形,∴∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠BCE,∵以线段AB为斜边在直线AB的上方作等腰直角三角形ABC,∴AC=BC,∴△ACD≌△BCE(AAS),∴AD=BE,CD=CE,设点C(m,n),∵A(1,),B(3,),∴AD=n﹣,CD=m﹣1,BE=3﹣m,CE=n﹣,∴,∴,∴C(,2),设过点C的双曲线的解析式为y=,∴k'=2×=5,∴过点C的双曲线的解析式为y=.【点评】此题是反比例函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形求出点C的坐标是解本题的关键.15.(2021•广元)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题;动点型;运算能力;推理能力;模型思想.【分析】(1)运用待定系数法即可求出抛物线解析式,再运用配方法求出顶点坐标;(2)如图1,将点沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,运用勾股定理即可求出答案;(3)如图2,连接BE,设D(t,﹣t2+2t+3),且t>3,可得DF=t2﹣2t﹣3,BF=t﹣3,AF=t+1,运用圆内接四边形的性质可得∠DAF=∠BEF,进而证明△AFD∽△EFB,利用=,即可求得答案.【解答】解:(1)根据表格可得出A(﹣1,0),B(3,0),C(0,3),设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线解析式为y=﹣x2+2x+3,顶点坐标为M(1,4);(2)如图1,将点沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,∵A、B关于直线x=1对称,∴AQ′=BQ′,∵CP′∥BC′,P′Q′∥CC′,∴四边形CC′Q′P′是平行四边形,∴CP′=C′Q′,Q′P′=CC′=1,在Rt△BOC′中,BC′===,∴AQ′+Q′P′+P′C=BQ′+C′Q′+Q′P′=BC′+Q′P′=+1,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,∴AQ+QP+PC的最小值为+1;(3)线段EF的长为定值1.如图2,连接BE,设D(t,﹣t2+2t+3),且t>3,∵EF⊥x轴,∴DF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,∵F(t,0),∴BF=OF﹣OB=t﹣3,AF=t﹣(﹣1)=t+1,∵四边形ABED是圆内接四边形,∴∠DAF+∠BED=180°,∵∠BEF+∠BED=180°,∴∠DAF=∠BEF,∵∠AFD=∠EFB=90°,∴△AFD∽△EFB,∴=,∴=,∴EF===1,∴线段EF的长为定值1.【点评】本题是二次函数与圆的综合题,主要考查了待定系数法求抛物线解析式,配方法,轴对称的应用,平行四边形的判定与性质,勾股定理,圆内接四边形性质,相似三角形的判定和性质等,属于中考数学压轴题,综合性强,难度大;第(2)小题难度不小,解决该问时,利用轴对称加平移找出AQ+QP+PC最小时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中化地质矿山总局云南地质勘查院招聘备考题库及参考答案详解
- 修订完善单位内控制度
- 甘肃省内控制度
- 县科技局内控制度
- 经济领域内控制度
- 出纳内控控制制度
- 市人防办内控制度
- 疾控科内控制度
- 健全建设项目内控制度
- 公司税务方面内控制度
- (新版)特种设备安全管理取证考试题库(浓缩500题)
- 调解实操指南:成为金牌调解员-笔记
- GB/T 27604-2024移动应急位置服务规则
- 苏教译林版五年级上册英语第八单元Unit8《At Christmas》单元测试卷
- 《合同能源管理介绍》课件
- 电力系统继电保护教案
- 《社会调查研究与方法》课程复习题-课程ID-01304试卷号-22196
- GB/T 43316.3-2023塑料耐环境应力开裂(ESC)的测定第3部分:弯曲法
- 科研伦理与学术规范-课后作业答案
- 2021年高考语文浙江卷现代文阅读《麦子》试题及答案
- 顶管工程施工检查验收表
评论
0/150
提交评论