初二数学培优培_第1页
初二数学培优培_第2页
初二数学培优培_第3页
初二数学培优培_第4页
初二数学培优培_第5页
已阅读5页,还剩115页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级培优经典题型和专题训练PAGEPAGE41、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。提公因式法是因式分解的最基本也是最常用的方法。它的理论依据就是乘法分配律。多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。下面我们通过例题进一步学习用提公因式法因式分解【分类解析】1.把下列各式因式分解(1)(2)分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。解:(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n为自然数时,,是在因式分解过程中常用的因式变换。解:2.利用提公因式法简化计算过程例:计算分析:算式中每一项都含有,可以把它看成公因式提取出来,再算出结果。解:原式3.在多项式恒等变形中的应用例:不解方程组,求代数式的值。分析:不要求解方程组,我们可以把和看成整体,它们的值分别是3和,观察代数式,发现每一项都含有,利用提公因式法把代数式恒等变形,化为含有和的式子,即可求出结果。解:把和分别为3和带入上式,求得代数式的值是。4.在代数证明题中的应用例:证明:对于任意自然数n,一定是10的倍数。分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是10的倍数即可。对任意自然数n,和都是10的倍数。都是大于1的自然数是合数说明:在大于1的正数中,除了1和这个数本身,还能被其它正整数整除的数叫合数。只能被1和本身整除的数叫质数。【实战模拟】1.分解因式:(1)(2)(n为正整数)(3)2.计算:的结果是()A. B. C. D.3.已知x、y都是正整数,且,求x、y。4.证明:能被45整除。5.化简:,且当时,求原式的值。2、运用公式法进行因式分解【知识精读】把乘法公式反过来,就可以得到因式分解的公式。主要有:平方差公式 完全平方公式 立方和、立方差公式 补充:欧拉公式:特别地:(1)当时,有(2)当时,欧拉公式变为两数立方和公式。运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。下面我们就来学习用公式法进行因式分解【分类解析】1.把分解因式的结果是()A. B.C. D.分析:。再利用平方差公式进行分解,最后得到,故选择B。说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分解一定要彻底。2.在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用例:已知多项式有一个因式是,求的值。分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出的值。解:根据已知条件,设则由此可得由(1)得把代入(2),得把代入(3),得3.在几何题中的应用。例:已知是的三条边,且满足,试判断的形状。分析:因为题中有,考虑到要用完全平方公式,首先要把转成。所以两边同乘以2,然后拆开搭配得完全平方公式之和为0,从而得解。解:为等边三角形。4.在代数证明题中应用例:两个连续奇数的平方差一定是8的倍数。分析:先根据已知条件把奇数表示出来,然后进行变形和讨论。解:设这两个连续奇数分别为(为整数)则由此可见,一定是8的倍数。5、中考点拨:例1:因式分解:________。解:说明:因式分解时,先看有没有公因式。此题应先提取公因式,再用平方差公式分解彻底。例2:分解因式:_________。解:说明:先提取公因式,再用完全平方公式分解彻底。题型展示:例1.已知:,求的值。解:原式说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求值,而是把代数式因式分解,变形后再把条件带入,从而简化计算过程。例2.已知,求证:证明:把代入上式,可得,即或或若,则,若或,同理也有说明:利用补充公式确定的值,命题得证。例3.若,求的值。解:且又两式相减得所以说明:按常规需求出的值,此路行不通。用因式分解变形已知条件,简化计算过程。【实战模拟】1.分解因式:(1)(2)(3)2.已知:,求的值。3.若是三角形的三条边,求证:4.已知:,求的值。5.已知是不全相等的实数,且,试求(1)的值;(2)的值。4、用分组分解法进行因式分解【知识精读】分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。下面我们就来学习用分组分解法进行因式分解。【分类解析】1.在数学计算、化简、证明题中的应用例1.把多项式分解因式,所得的结果为()分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。解:原式故选择C例2.分解因式分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把,分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。解法1:解法2:2.在几何学中的应用例:已知三条线段长分别为a、b、c,且满足证明:以a、b、c为三边能构成三角形分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边”证明:3.在方程中的应用例:求方程的整数解分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x与y,故可考虑借助因式分解求解解:4、中考点拨例1.分解因式:_____________。解:说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。例2.分解因式:____________解:说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。例3.分解因式:____________解:说明:分组的目的是能够继续分解。5、题型展示:例1.分解因式:解:说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn分成2mn和2mn,配成完全平方和平方差公式。例2.已知:,求ab+cd的值。解:ab+cd=说明:首先要充分利用已知条件中的1(任何数乘以1,其值不变),其次利用分解因式将式子变形成含有ac+bd因式乘积的形式,由ac+bd=0可算出结果。例3.分解因式:分析:此题无法用常规思路分解,需拆添项。观察多项式发现当x=1时,它的值为0,这就意味着的一个因式,因此变形的目的是凑这个因式。解一(拆项):解二(添项):说明:拆添项法也是分解因式的一种常见方法,请同学们试拆一次项和常数项,看看是否可解?【实战模拟】1.填空题:2.已知:3.分解因式:4.已知:,试求A的表达式。5.证明:5、用十字相乘法把二次三项式分解因式【知识精读】对于首项系数是1的二次三项式的十字相乘法,重点是运用公式进行因式分解。掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个数的积,且其和等于一次项系数。对于二次三项(a、b、c都是整数,且)来说,如果存在四个整数满足,并且,那么二次三项式即可以分解为。这里要确定四个常数,分析和尝试都要比首项系数是1的类型复杂,因此一般要借助画十字交叉线的办法来确定。下面我们一起来学习用十字相乘法因式分解。【分类解析】1.在方程、不等式中的应用例1.已知:,求x的取值范围。分析:本题为二次不等式,可以应用因式分解化二次为一次,即可求解。解:例2.如果能分解成两个整数系数的二次因式的积,试求m的值,并把这个多项式分解因式。分析:应当把分成,而对于常数项-2,可能分解成,或者分解成,由此分为两种情况进行讨论。解:(1)设原式分解为,其中a、b为整数,去括号,得:将它与原式的各项系数进行对比,得:解得:此时,原式(2)设原式分解为,其中c、d为整数,去括号,得:将它与原式的各项系数进行对比,得:解得:此时,原式2.在几何学中的应用例.已知:长方形的长、宽为x、y,周长为16cm,且满足,求长方形的面积。分析:要求长方形的面积,需借助题目中的条件求出长方形的长和宽。解:或又解得:或∴长方形的面积为15cm2或3、在代数证明题中的应用例.证明:若是7的倍数,其中x,y都是整数,则是49的倍数。分析:要证明原式是49的倍数,必将原式分解成49与一个整数的乘积的形式。证明一:∵是7的倍数,7y也是7的倍数(y是整数)∴是7的倍数而2与7互质,因此,是7的倍数,所以是49的倍数。证明二:∵是7的倍数,设(m是整数)则又∵∵x,m是整数,∴也是整数所以,是49的倍数。4、中考点拨例1.把分解因式的结果是________________。解:说明:多项式有公因式,提取后又符合十字相乘法和公式法,继续分解彻底。例2.因式分解:_______________解:说明:分解系数时一定要注意符号,否则由于不慎将造成错误。5、题型展示例1.若能分解为两个一次因式的积,则m的值为()A.1 B.-1 C. D.2解:-6可分解成或,因此,存在两种情况:由(1)可得:,由(1)可得:故选择C。说明:对二元二次多项式分解因式时,要先观察其二次项能否分解成两个一次式乘积,再通过待定系数法确定其系数,这是一种常用的方法。例2.已知:a、b、c为互不相等的数,且满足。求证:证明:说明:抓住已知条件,应用因式分解使命题得证。例3.若有一因式。求a,并将原式因式分解。解:有一因式∴当,即时,说明:由条件知,时多项式的值为零,代入求得a,再利用原式有一个因式是,分解时尽量出现,从而分解彻底。【实战模拟】1.分解因式:(1)(2)(3)2.在多项式,哪些是多项式的因式?3.已知多项式有一个因式,求k的值,并把原式分解因式。4.分解因式:5.已知:,求的值。7、因式分解小结【知识精读】因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。1.因式分解的对象是多项式;2.因式分解的结果一定是整式乘积的形式;3.分解因式,必须进行到每一个因式都不能再分解为止;4.公式中的字母可以表示单项式,也可以表示多项式;5.结果如有相同因式,应写成幂的形式;6.题目中没有指定数的范围,一般指在有理数范围内分解;7.因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;下面我们一起来回顾本章所学的内容。【分类解析】1.通过基本思路达到分解多项式的目的例1.分解因式分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把,,分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解。解一:原式解二:原式=2.通过变形达到分解的目的例1.分解因式解一:将拆成,则有解二:将常数拆成,则有3.在证明题中的应用例:求证:多项式的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。本题要证明这个多项式是非负数,需要变形成完全平方数。证明:设,则4.因式分解中的转化思想例:分解因式:分析:本题若直接用公式法分解,过程很复杂,观察a+b,b+c与a+2b+c的关系,努力寻找一种代换的方法。解:设a+b=A,b+c=B,a+2b+c=A+B说明:在分解因式时,灵活运用公式,对原式进行“代换”是很重要的。中考点拨:例1.在中,三边a,b,c满足求证:证明:说明:此题是代数、几何的综合题,难度不大,学生应掌握这类题不能丢分。例2.已知:__________解:说明:利用等式化繁为易。题型展示:1.若x为任意整数,求证:的值不大于100。解:说明:代数证明问题在初二是较为困难的问题。一个多项式的值不大于100,即要求它们的差小于零,把它们的差用因式分解等方法恒等变形成完全平方是一种常用的方法。2.将解:说明:利用因式分解简化有理数的计算。【实战模拟】1.分解因式:2.已知:的值。3.矩形的周长是28cm,两边x,y使,求矩形的面积。4.求证:是6的倍数。(其中n为整数)5.已知:a、b、c是非零实数,且,求a+b+c的值。6.已知:a、b、c为三角形的三边,比较的大小。10、分式的运算【知识精读】1.分式的乘除法法则;当分子、分母是多项式时,先进行因式分解再约分。2.分式的加减法(1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。求最简公分母是通分的关键,它的法则是:①取各分母系数的最小公倍数;②凡出现的字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最高的。(2)同分母的分式加减法法则(3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。3.分式乘方的法则(n为正整数)4.分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”(3)运算中及时约分、化简;(4)注意运算律的正确使用;(5)结果应为最简分式或整式。下面我们一起来学习分式的四则运算。【分类解析】例1:计算的结果是()A. B. C. D.分析:原式故选C说明:先将分子、分母分解因式,再约分。例2:已知,求的值。分析:若先通分,计算就复杂了,我们可以用替换待求式中的“1”,将三个分式化成同分母,运算就简单了。解:原式例3:已知:,求下式的值:

分析:本题先化简,然后代入求值。化简时在每个括号内通分,除号改乘号,除式的分子、分母颠倒过来,再约分、整理。最后将条件等式变形,用一个字母的代数式来表示另一个字母,带入化简后的式子求值。这是解决条件求值问题的一般方法。解:故原式例4:已知a、b、c为实数,且,那么的值是多少?分析:已知条件是一个复杂的三元二次方程组,不容易求解,可取倒数,进行简化。解:由已知条件得:所以即又因为所以例5:化简:解一:原式解二:原式说明:解法一是一般方法,但遇到的问题是通分后分式加法的结果中分子是一个四次多项式,而它的分解需要拆、添项,比较麻烦;解法二则运用了乘法分配律,避免了上述问题。因此,解题时注意审题,仔细观察善于抓住题目的特征,选择适当的方法。例1、计算:解:原式说明:分式运算时,若分子或分母是多项式,应先因式分解。例2、已知:,则_________。解:说明:分式加减运算后,等式左右两边的分母相同,则其分子也必然相同,即可求出M。中考点拨:例1:计算:解一:原式解二:原式说明:在分式的运算过程中,乘法公式和因式分解的使用会简化解题过程。此题两种方法的繁简程度一目了然。例2:若,则的值等于()A. B. C. D.解:原式故选A【实战模拟】1.已知:,则的值等于()A. B. C. D.2.已知,求的值。3.计算:4.若,试比较A与B的大小。5.已知:,求证:。

11、公式变形与字母系数方程【知识精读】含有字母系数的方程和只含有数字系数的一元一次方程的解法是相同的,但用含有字母的式子去乘以或除以方程的两边,这个式子的值不能为零。公式变形实质上是解含有字母系数的方程对于含字母系数的方程,通过化简,一般归结为解方程型,讨论如下:(1)当时,此时方程为关于x的一元一次方程,解为:(2)当时,分以下两种情况:<1>若,原方程变为,为恒等时,此时x可取任意数,故原方程有无数个解;<2>若,原方程变为,这是个矛盾等式,故原方程无解。含字母系数的分式方程主要有两类问题:(一)求方程的解,其中包括:字母给出条件和未给出条件:(二)已知方程解的情况,确定字母的条件。下面我们一起来学习公式变形与字母系数方程【分类解析】1.求含有字母系数的一元一次方程的解例1.解关于x的方程分析:将x以外字母看作数字,类似解一元一次方程,但注意除数不为零的条件。解:去分母得:移项,得2.求含字母系数的分式方程的解例2.解关于x的方程分析:字母未给出条件,首先挖掘隐含的条件,分情况讨论。解:若a、b全不为0,去分母整理,得对是否为0分类讨论:(1)当,即时,有,方程无解。(2)当,即时,解之,得若a、b有一个为0,方程为,无解若a、b全为0,分母为0,方程无意义检验:当时,公分母,所以当时,是原方程的解。说明:这种字母没给出条件的方程,首先讨论方程存在的隐含条件,这里a、b全不为0时,方程存在,然后在方程存在的情况下,去分母、化为一元一次方程的最简形式,再对未知数的字母系数分类讨论求解。当a、b中只有一个为0时,方程也存在,但无解;当a、b全为0时,方程不存在。最后对字母条件归纳,得出方程的解。3.已知字母系数的分式方程的解,确定字母的条件例3.如果关于x的方程有唯一解,确定a、b应满足的条件。分析:显然方程存在的条件是:且解:若且,去分母整理,得当且仅当,即时,解得经检验,是原方程的解应满足的条件:且说明:已知方程有唯一解,显然方程存在的隐含条件是a、b全不为0,然后在方程存在的条件下,求有解且唯一的条件。因为是分式方程,需验根后确定唯一解的条件。4.在其它学科中的应用(公式变形)例4.在物理学中我们学习了公式,其中所有的字母都不为零。已知S、、t,试求a。分析:利用字母系数方程完成公式变形,公式变形时要分清哪个量是被表示的量,则这个量就是未知数,其它的量均视为已知量,然后按解字母系数方程求解。解:5、中考点拨例1.填空:在中,已知且,则________。解:例2.在公式中,已知P、F、t都是正数,则s等于()A. B. C. D.以上都不对解:,故选A说明:以上两题均考察了公式变形。6、题型展示:例1.解关于x的方程解:原方程化为:即说明:本题中,常数“3”是一个重要的量,把3拆成3个1,正好能凑成公因式。若按常规在方程两边去分母,则解法太繁,故解题中一定要注意观察方程的结构特征,才能找到合适的办法。例2.解关于x的方程。解:去括号:说明:解含字母系数的方程,在消未知数的系数时,一定要强调未知数的系数不等于0,如果方程的解是分式形式,必须化成最简分式或整式。例3.已知,求z。()分析:本题是求z,实质上是解含有字母系数的分式方程,应确定已知量和未知量,把方程化归为的形式,便可求解。解:又【实战模拟】1.解关于x的方程,其中。2.解关于x的方程。3.a为何值时,关于x的方程的解等于零?4.已知关于x的方程有一个正整数解,求m的取值范围。5.如果a、b为定值,关于x的一次方程,无论取何值,它的根总是1,求a、b的值。12、分式方程及其应用【知识精读】1.解分式方程的基本思想:把分式方程转化为整式方程。2.解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。3.列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。下面我们来学习可化为一元一次方程的分式方程的解法及其应用。【分类解析】例1.解方程:分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得例2.解方程分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。解:原方程变形为:方程两边通分,得经检验:原方程的根是例3.解方程:分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。解:由原方程得:即例4.解方程:分析:此题若用一般解法,则计算量较大。当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。解:原方程变形为:约分,得方程两边都乘以注:分式方程命题中一般渗透不等式,恒等变形,因式分解等知识。因此要学会根据方程结构特点,用特殊方法解分式方程。5、中考题解:例1.若解分式方程产生增根,则m的值是()A. B.C. D.分析:分式方程产生的增根,是使分母为零的未知数的值。由题意得增根是:化简原方程为:把代入解得,故选择D。例2.甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?分析:利用所用时间相等这一等量关系列出方程。解:设甲班每小时种x棵树,则乙班每小时种(x+2)棵树,由题意得:答:甲班每小时种树20棵,乙班每小时种树22棵。说明:在解分式方程应用题时一定要检验方程的根。6、题型展示:例1.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。求这艘轮船在静水中的速度和水流速度分析:在航行问题中的等量关系是“船实际速度=水速+静水速度”,有顺水、逆水,取水速正、负值,两次航行提供了两个等量关系。解:设船在静水中的速度为x千米/小时,水流速度为y千米/小时由题意,得答:水流速度为3千米/小时,船在静水中的速度为17千米/例2.m为何值时,关于x的方程会产生增根?解:方程两边都乘以,得整理,得说明:分式方程的增根,一定是使最简公分母为零的根【实战模拟】1.甲、乙两地相距S千米,某人从甲地出发,以v千米/小时的速度步行,走了a小时后改乘汽车,又过b小时到达乙地,则汽车的速度()A. B.C. D.2.如果关于x的方程A. B. C. D.33.解方程:4.求x为何值时,代数式的值等于2?5.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程。已知甲队单独完成工程所需的天数是乙队单独完成所需天数的,求甲、乙两队单独完成各需多少天?

13、分式总复习【知识精读】【分类解析】1.分式有意义的应用例1.若,试判断是否有意义。分析:要判断是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断与零的关系。解:即或中至少有一个无意义。2.结合换元法、配方法、拆项法、因式分解等方法简化分式运算。例2.计算:分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分离分式法”简化计算。解:原式例3.解方程:分析:因为,,所以最简公分母为:,若采用去分母的通常方法,运算量较大。由于故可得如下解法。解:原方程变为经检验,是原方程的根。3.在代数求值中的应用例4.已知与互为相反数,求代数式的值。分析:要求代数式的值,则需通过已知条件求出a、b的值,又因为,,利用非负数及相反数的性质可求出a、b的值。解:由已知得,解得原式把代入得:原式4.用方程解决实际问题例5.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度。解:设这列火车的速度为x千米/时根据题意,得方程两边都乘以12x,得解得经检验,是原方程的根答:这列火车原来的速度为75千米/时。5.在数学、物理、化学等学科的学习中,都会遇到有关公式的推导,公式的变形等问题。而公式的变形实质上就是解含有字母系数的方程。例6.已知,试用含x的代数式表示y,并证明。解:由,得6、中考原题:例1.已知,则M=__________。分析:通过分式加减运算等式左边和右边的分母相同,则其分子也必然相同,即可求出M。解:例2.已知,那么代数式的值是_________。分析:先化简所求分式,发现把看成整体代入即可求的结果。解:原式7、题型展示:例1.当x取何值时,式子有意义?当x取什么数时,该式子值为零?解:由得或所以,当和时,原分式有意义由分子得当时,分母当时,分母,原分式无意义。所以当时,式子的值为零例2.求的值,其中。分析:先化简,再求值。解:原式【实战模拟】1.当x取何值时,分式有意义?2.有一根烧红的铁钉,质量是m,温度是,它放出热量Q后,温度降为多少?(铁的比热为c)3.计算:4.解方程:5.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天。现在甲、乙两人合作2天后,再由乙单独做,正好按期完成。问规定日期是多少天?6.已知,求的值。

3、三角形及其有关概念【知识精读】1.三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2.三角形中的几条重要线段:(1)三角形的角平分线(三条角平分线的交点叫做内心)(2)三角形的中线(三条中线的交点叫重心)(3)三角形的高(三条高线的交点叫垂心)3.三角形的主要性质(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边;(2)三角形的内角之和等于180°(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和;(4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角;(5)三角形具有稳定性。4.补充性质:在中,D是BC边上任意一点,E是AD上任意一点,则。三角形是最常见的几何图形之一,在工农业生产和日常生活中都有广泛的应用。三角形又是多边形的一种,而且是最简单的多边形,在几何里,常常把多边形分割成若干个三角形,利用三角形的性质去研究多边形。实际上对于一些曲线,也可以利用一系列的三角形去逼近它,从而利用三角形的性质去研究它们。因此,学好本章知识,能为以后的学习打下坚实的基础。5.三角形边角关系、性质的应用【分类解析】例1.锐角三角形ABC中,∠C=2∠B,则∠B的范围是()A. B.C. D.分析:因为为锐角三角形,所以又∠C=2∠B,又∵∠A为锐角,为锐角,即,故选择C。例2.选择题:已知三角形的一个外角等于160°,另两个外角的比为2:3,则这个三角形的形状是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定分析:由于三角形的外角和等于360°,其中一个角已知,另两个角的比也知道,因此三个外角的度数就可以求出,进而可求出三个内角的度数,从而可判断三角形的形状。解:∵三角形的一个外角等于160°∴另两个外角的和等于200°设这两个外角的度数为2x,3x解得:与80°相邻的内角为100°∴这个三角形为钝角三角形应选C例3.如图,已知:在中,,求证:。分析:欲证,可作∠ABC的平分线BE交AC于E,只要证即可。为与题设联系,又作AF//BE交CB的延长线于F。显然∠EBC=∠F,只要证即可。由可得证。证明:作∠ABC的角平分线BE交AC于E,过点A作AF//BE交CB的延长线于F又∵BE平分∠ABC,∴∠EBC=∠ABE∴∠F=∠FAB,∴AB=BF又∵AB+FB>AF,即2AB>AF又∵,又∵例4.已知:三角形的一边是另一边的两倍。求证:它的最小边在它的周长的与之间。分析:首先应根据已知条件,运用边的不等关系,找出最小边,然后由周长与边的关系加以证明。证明:如图,设的三边为a、b、c,其中,因此,c是最小边,因此,,即故最小边在周长的与之间。中考点拨:例1.选择题:如图是一个任意的五角星,它的五个顶角的和是()A.50 B.100 C.180 D.200分析:由于我们学习了三角形的内角、外角的知识,所以需要我们把问题转化为三角形角的问题。解:所以选择C例2.选择题:已知三角形的两边分别为5和7,则第三边x的范围是()A.大于2 B.小于12 C.大于2小于12 D.不能确定分析:根据三角形三边关系应有,即所以应选C例3.已知:P为边长为1的等边内任一点。求证:证明:过P点作EF//BC,分别交AB于E,交AC于F,则∠AEP=∠ABC=60°在中,是等边三角形题型展示:例1.已知:如图,在中,D是BC上任意一点,E是AD上任意一点。求证:(1)∠BEC>∠BAC;(2)AB+AC>BE+EC。分析:在(1)中,利用三角形内角和定理的推论即可证出在(2)中,添加一条辅助线,转化到另一个三角形中,利用边的关系定理即可证出。证明:(1)∵∠BED是的一个外角,同理,即(2)延长BE交AC于F点即例2.求证:直角三角形的两个锐角的相邻外角的平分线所夹的角等于45°。已知:如图,在中,是的外角,AF、BF分别平分∠EAB及∠ABD。求证:∠AFB=45°分析:欲证,须证∵AF、BF分别平分∠EAB及∠ABD∴要转证∠EAB+∠ABD=270°又∵∠C=90°,三角形一个外角等于和它不相邻的两个内角之和∴问题得证证明:∵∠EAB=∠ABC+∠C∠ABD=∠CAB+∠C∠ABC+∠C+∠CAB=180°,∠C=90°∵AF、BF分别平分∠EAB及∠ABD在中,【实战模拟】1.已知:三角形的三边长为3,8,,求x的取值范围。2.已知:中,,D点在BC的延长线上,使,,,求α和β间的关系为?3.如图,中,的平分线交于P点,,则()A.68° B.80° C.88° D.46°4.已知:如图,AD是的BC边上高,AE平分。求证:5.求证:三角形的两个外角平分线所成的角等于第三个外角的一半。

6、全等三角形及其应用【知识精读】1.全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。互相重合的边叫对应边,互相重合的角叫对应角。2.全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 3.全等三角形的的性质:全等三角形的对应边相等,对应角相等;4.寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。翻折如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;旋转如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;平移如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。5.判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6.注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a:三个角对应相等,即AAA;b:有两边和其中一角对应相等,即SSA。全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。【分类解析】全等三角形知识的应用证明线段(或角)相等例1:如图,已知AD=AE,AB=AC.求证:BF=FC分析:由已知条件可证出ΔACD≌ΔABE,而BF和FC分别位于ΔDBF和ΔEFC中,因此先证明ΔACD≌ΔABE,再证明ΔDBF≌ΔECF,既可以得到BF=FC.证明:在ΔACD和ΔABE中,∴ΔACD≌ΔABE(SAS)∴∠B=∠C(全等三角形对应角相等)又∵AD=AE,AB=AC.∴AB-AD=AC-AE即BD=CE在ΔDBF和ΔECF中∴ΔDBF≌ΔECF(AAS)∴BF=FC(全等三角形对应边相等)(2)证明线段平行例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AF=CE.求证:AB∥CD分析:要证AB∥CD,需证∠C=∠A,而要证∠C=∠A,又需证ΔABF≌ΔCDE.由已知BF⊥AC,DE⊥AC,知∠DEC=∠BFA=90°,且已知DE=BF,AF=CE.显然证明ΔABF≌ΔCDE条件已具备,故可先证两个三角形全等,再证∠C=∠A,进一步证明AB∥CD.证明:∵DE⊥AC,BF⊥AC(已知)∴∠DEC=∠BFA=90°(垂直的定义)在ΔABF与ΔCDE中,∴ΔABF≌ΔCDE(SAS)∴∠C=∠A(全等三角形对应角相等)∴AB∥CD(内错角相等,两直线平行)(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等例3:如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE分析:(ⅰ)折半法:取CD中点F,连接BF,再证ΔCEB≌ΔCFB.这里注意利用BF是ΔACD中位线这个条件。证明:取CD中点F,连接BF∴BF=EQ\F(1,2)AC,且BF∥AC(三角形中位线定理)∴∠ACB=∠2(两直线平行内错角相等)又∵AB=AC∴∠ACB=∠3(等边对等角)∴∠3=∠2在ΔCEB与ΔCFB中,∴ΔCEB≌ΔCFB(SAS)∴CE=CF=EQ\F(1,2)CD(全等三角形对应边相等)即CD=2CE(ⅱ)加倍法证明:延长CE到F,使EF=CE,连BF.在ΔAEC与ΔBEF中,∴ΔAEC≌ΔBEF(SAS)∴AC=BF,∠4=∠3(全等三角形对应边、对应角相等)∴BF∥AC(内错角相等两直线平行)∵∠ACB+∠CBF=180o,∠ABC+∠CBD=180o,又AB=AC∴∠ACB=∠ABC∴∠CBF=∠CBD(等角的补角相等)在ΔCFB与ΔCDB中,∴ΔCFB≌ΔCDB(SAS)∴CF=CD即CD=2CE说明:关于折半法有时不在原线段上截取一半,而利用三角形中位线得到原线段一半的线段。例如上面折道理题也可这样处理,取AC中点F,连BF(如图)(B为AD中点是利用这个办法的重要前提),然后证CE=BF.(4)证明线段相互垂直例4:已知:如图,A、D、B三点在同一条直线上,ΔADC、ΔBDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。分析:本题没有直接给出待证的结论,而是让同学们先根据已知条件推断出结论,然后再证明所得出的结论正确。通过观察,可以猜测:AO=BC,AO⊥BC.证明:延长AO交BC于E,在ΔADO和ΔCDB中∴ΔADO≌ΔCDB(SAS)∴AO=BC,∠OAD=∠BCD(全等三角形对应边、对应角相等)∵∠AOD=∠COE(对顶角相等)∴∠COE+∠OCE=90o∴AO⊥BC5、中考点拨:例1.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DF=DE,连结FC.求证:∠F=∠A.分析:证明两个角相等,常证明这两个角所在的两个三角形全等,在已知图形中∠A、∠F不在全等的两个三角形中,但由已知可证得EF∥AC,因此把∠A通过同位角转到△BDE中的∠BED,只要证△EBD≌△FCD即可.证明:∵AB=AC,∴∠ACB=∠B,∵EB=ED,∴∠ACB=∠EDB.∴ED∥AC.∴∠BED=∠A.∵BE=EA.∴BD=CD.又DE=DF,∠BDE=∠CDF∴△BDE≌△CDF,∴∠BED=∠F.∴∠F=∠A.说明:证明角(或线段)相等可以从证明角(或线段)所在的三角形全等入手,在寻求全等条件时,要注意结合图形,挖掘图中存在的对项角、公共角、公共边、平行线的同位角、内错角等相等的关系。例2如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE、DE.求证:EC=ED分析:把已知条件标注在图上,需构造和△AEC全等的三角形,因此过D点作DF∥AC交BE于F点,证明△AEC≌△FED即可。证明:过D点作DF∥AC交BE于F点∵△ABC为等边三角形∴△BFD为等边三角形∴BF=BD=FD∵AE=BD∴AE=BF=FD∴AE-AF=BF-AF即EF=AB∴EF=AC在△ACE和△DFE中,∴△AEC≌△FED(SAS)∴EC=ED(全等三角形对应边相等)题型展示:例1如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.分析:在AB上截取AE=AC,构造全等三角形,△AED≌△ACD,得DE=DC,只需证DE=BE问题便可以解决.证明:在AB上截取AE=AC,连结DE.∵AE=AC,∠1=∠2,AD=AD,∴△AED≌△ACD,∴DE=DC,∠AED=∠C.∵∠AED=∠B+∠EDB,∠C=2∠B,∴2∠B=∠B+∠EDB.即∠B=∠EDB.∴EB=ED,即ED=DC,∴AB=AC+DC.剖析:证明一条线段等于另外两条线段之和的常用方法有两种,一种是截长法(即在长线段上截取一段等于两条短线段的一条,再证余下的部分等于另一条短线段);如作AE=AC是利用了角平分线是角的对称轴的特性,构造全等三角形,另一种方法是补短法(即延长一条短线段等于长线段,再证明延长的部分与另一条短线段相等),其目的是把证明线段的和差转化为证明线段相等的问题,实际上仍是构造全等三角形,这种转化图形的能力是中考命题的重点考查的内容.【实战模拟】1.下列判断正确的是()(A)有两边和其中一边的对角对应相等的两个三角形全等(B)有两边对应相等,且有一角为30°的两个等腰三角形全等(C)有一角和一边对应相等的两个直角三角形全等(D)有两角和一边对应相等的两个三角形全等2.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,已知C为线段AB上的一点,ACM和CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:CEF是等边三角形。4.如图,在△ABC中,AD为BC边上的中线.求证:AD<EQEQ\F(1,2)(AB+AC)5.如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H点,交AE于G.求证:BD=CG.9、等腰三角形【知识精读】(-)等腰三角形的性质1.有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2.定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。(二)等腰三角形的判定1.有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。)推论1:三个角都相等的三角形是等边三角形。推论2:有一个角等于60°的等腰三角形是等边三角形。推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。2.定理及其推论的作用。等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。3.等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。【分类解析】例1.如图,已知在等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。分析:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证BD=ED。因为△ABC是等边三角形,∠DBE=∠ABC,而由CE=CD,又可证∠E=∠ACB,所以∠1=∠E,从而问题得证。证明:因为三角形ABC是等边三角形,D是AC的中点所以∠1=∠ABC又因为CE=CD,所以∠CDE=∠E所以∠ACB=2∠E即∠1=∠E所以BD=BE,又DM⊥BC,垂足为M所以M是BE的中点(等腰三角形三线合一定理)例2.如图,已知:中,,D是BC上一点,且,求的度数。分析:题中所要求的在中,但仅靠是无法求出来的。因此需要考虑和在题目中的作用。此时图形中三个等腰三角形,构成了内外角的关系。因此可利用等腰三角形的性质和三角形的内外角关系定理来求。解:因为,所以因为,所以;因为,所以(等边对等角)而所以所以又因为即所以即求得说明1.等腰三角形的性质是沟通本题中角之间关系的重要桥梁。把边的关系转化成角的关系是此等腰三角形性质的本质所在。本条性质在解题中发挥着重要的作用,这一点在后边的解题中将进一步体现。2.注意“等边对等角”是对同一个三角形而言的。3.此题是利用方程思想解几何计算题,而边证边算又是解决这类题目的常用方法。例3.已知:如图,中,于D。求证:。分析:欲证角之间的倍半关系,结合题意,观察图形,是等腰三角形的顶角,于是想到构造它的一半,再证与的关系。证明:过点A作于E,所以(等腰三角形的三线合一性质)因为又,所以所以(直角三角形两锐角互余)所以(同角的余角相等)即说明:1.作等腰三角形底边高线的目的是利用等腰三角形的三线合一性质,构造角的倍半关系。因此添加底边的高是一条常用的辅助线;2.对线段之间的倍半关系,常采用“截长补短”或“倍长中线”等辅助线的添加方法,对角间的倍半关系也同理,或构造“半”,或构造“倍”。因此,本题还可以有其它的证法,如构造出的等角等。4、中考题型:1.如图,△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线,且相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个分析:由已知条件根据等腰三角形的性质和三角形内角和的度数可求得等腰三角形有8个,故选择C。2.)已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,E、F分别是垂足。求证:AE=AF。证明:因为,所以又因为所以又D是BC的中点,所以所以所以,所以说明:证法二:连结AD,通过证明即可5、题形展示:例1.如图,中,,BD平分。求证:。分析一:从要证明的结论出发,在BC上截取,只需证明,考虑到,想到在BC上截取,连结DE,易得,则有,只需证明,这就要从条件出发,通过角度计算可以得出。证明一:在BC上截取,连结DE、DF在和中,又而即分析二:如图,可以考虑延长BD到E,使DE=AD,这样BD+AD=BD+DE=BE,只需证明BE=BC,由于,只需证明易证,,故作的角平分线,则有,进而证明,从而可证出。证明二:延长BD到E,使DE=AD,连结CE,作DF平分交BC于F。由证明一知:则有DF平分,在和中,而在和中,在中,说明:“一题多证”在几何证明中经常遇到,它是培养思维能力提高解题水平的有效途径,读者在以后的几何学习中要善于从不同角度去思考、去体会,进一步提高自身的解题能力。【实战模拟】1.选择题:等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为()A.2cm B.8cm C.2cm或8cm D.以上都不对2.如图,是等边三角形,,则的度数是________。3.求证:等腰三角形两腰中线的交点在底边的垂直平分线上.4.中,,AB的中垂线交AB于D,交CA延长线于E,求证:。

14、如何做几何证明题【知识精读】1.几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。例1.已知:如图1所示,中,。求证:DE=DF分析:由是等腰直角三角形可知,,由D是AB中点,可考虑连结CD,易得,。从而不难发现证明:连结CD说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD,因为CD既是斜边上的中线,又是底边上的中线。本题亦可延长ED到G,使DG=DE,连结BG,证是等腰直角三角形。有兴趣的同学不妨一试。例2.已知:如图2所示,AB=CD,AD=BC,AE=CF。求证:∠E=∠F证明:连结AC在和中,在和中,说明:利用三角形全等证明线段求角相等。常须添辅助线,制造全等三角形,这时应注意:(1)制造的全等三角形应分别包括求证中一量;(2)添辅助线能够直接得到的两个全等三角形。2、证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。例3.如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。求证:KH∥BC分析:由已知,BH平分∠ABC,又BH⊥AH,延长AH交BC于N,则BA=BN,AH=HN。同理,延长AK交BC于M,则CA=CM,AK=KM。从而由三角形的中位线定理,知KH∥BC。证明:延长AH交BC于N,延长AK交BC于M∵BH平分∠ABC又BH⊥AHBH=BH同理,CA=CM,AK=KM是的中位线即KH//BC说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。例4.已知:如图4所示,AB=AC,。求证:FD⊥ED证明一:连结AD在和中,说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。证明二:如图5所示,延长ED到M,使DM=ED,连结FE,FM,BM说明:证明两直线垂直的方法如下:(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。(3)证明二直线的夹角等于90°。3、证明一线段和的问题(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法)例5.已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、CE相交于O。求证:AC=AE+CD分析:在AC上截取AF=AE。易知,。由,知。,得:证明:在AC上截取AF=AE又即(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)例6.已知:如图7所示,正方形ABCD中,F在DC上,E在BC上,。求证:EF=BE+DF分析:此题若仿照例1,将会遇到困难,不易利用正方形这一条件。不妨延长CB至G,使BG=DF。证明:延长CB至G,使BG=DF在正方形ABCD中,又即∠GAE=∠FAE4、中考题:如图8所示,已知为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连结CE、DE。求证:EC=ED证明:作DF//AC交BE于F是正三角形是正三角形又AE=BD即EF=AC题型展示:证明几何不等式:例题:已知:如图9所示,。求证:证明一:延长AC到E,使AE=AB,连结DE在和中,证明二:如图10所示,在AB上截取AF=AC,连结DF则易证说明:在有角平分线条件时,常以角平分线为轴翻折构造全等三角形,这是常用辅助线。【实战模拟】1.已知:如图11所示,中,,D是AB上一点,DE⊥CD于D,交BC于E,且有。求证:2.已知:如图12所示,在中,,CD是∠C的平分线。求证:BC=AC+AD3.已知:如图13所示,过的顶点A,在∠A内任引一射线,过B、C作此射线的垂线BP和CQ。设M为BC的中点。求证:MP=MQ4.中,于D,求证:

15、三角形总复习【知识精读】1.三角形的内角和定理与三角形的外角和定理;2.三角形中三边之间的关系定理及其推论;3.全等三角形的性质与判定;4.特殊三角形的性质与判定(如等腰三角形);5.直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论