待定系数法解函数解析式_第1页
待定系数法解函数解析式_第2页
待定系数法解函数解析式_第3页
待定系数法解函数解析式_第4页
待定系数法解函数解析式_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

待定系数法求二次函数解析式说一说y=3x2y=x2+2x+1说出下列函数的开口方向、对称轴和顶点坐标:y=-2x2+3y=-4(x+3)2y=(x-2)2+121温故而知新二次函数解析式有哪几种表达式?

一般式:y=ax2+bx+c(a≠0)

顶点式:y=a(x-h)2+k(a≠0)特殊形式交点式:y=a(x-x1)(x-x2)(a≠0)想一想

有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?

分析:通常要先建立适当的直角坐标系,再写出函数关系式,然后再根据关系式进行计算,放样画图.思考:如果要求二次函数解析式y=ax2+bx+c(a≠0)中的a、b、c,至少需要几个点的坐标?猜一猜已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0),B(3,0),并且过点C(0,-3),求抛物线的解析式?例题选讲解:设所求的二次函数为y=ax2+bx+c由条件得:0=a-b+c0=9a+3b+c-3=c得:

a=1b=-2c=-3故所求的抛物线解析式为y=x2-2x-3一般式:y=ax2+bx+c交点式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例1已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0),B(3,0),并且过点C(0,-3),求抛物线的解析式?例题选讲解:设所求的二次函数为y=a(x+1)(x-3)由条件得:点C(0,-3)在抛物线上所以:a(0+1)(0-3)=-3得:

a=1故所求的抛物线解析式为y=(x+1)(x-3)即:y=x2-2x-3一般式:y=ax2+bx+c交点式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例1一般式:y=ax2+bx+c交点式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例2已知抛物线的顶点在(3,-2),且与x轴两交点的距离为4,求此二次函数的解析式.解:设函数关系式y=a(x-3)2-2例题选讲∵抛物线与x轴两交点距离为4,对称轴为x=3∴过点(5,0)或(1,0)把(1,0)代入得,4a=2a=21∴y=(x-3)2-2211、已知二次函数的图像过点(0,0),(1,-3),(2,-7)三点,则该二次函数关系式为______________。2、若二次函数的图像有最高点为(1,-6),且经过点

(2,-8),则此二次函数的关系式______________3、若二次函数的图像与x轴的交点坐标为(1,0)、(2,0)且过点(3,4),则此二次函数的关系式为___________练一练知识应用有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?

分析:通常要先建立适当的直角坐标系,再写出函数关系式,然后再根据关系式进行计算,放样画图.有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.设抛物线的解析式为y=ax2+bx+c,解法一:根据题意可知:抛物线经过(0,0),(20,16)和(40,0)三点可得方程组∴所求抛物线解析式为有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.设抛物线为y=a(x-20)2+16

解法二根据题意可知∵点(0,0)在抛物线上,∴所求抛物线解析式为

设抛物线为y=ax(x-40)解:根据题意可知∵点(20,16)在抛物线上,有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.xy1620-20用待定系数法确定二次函数解析式的基本方法分四步完成:一设、二代、三解、四还原一设:指先设出二次函数的解析式二代:指根据题中所给条件,代入二次函数的解析式,得到关于a、b、c的方程组三解:指解此方程或方程组四还原:指将求出的a、b、c还原回原解析式中方法小结解:根据题意得顶点为(-1,4)由条件得与x轴交点坐标(2,0);(-4,0)已知当x=-1时,抛物线最高点的纵坐标为4,且与x轴两交点之间的距离为6,求此函数解析式yox设二次函数解析式:y=a(x+1)2+4有0=a(2+1)2+4,得a=故所求的抛物线解析式为y=

(x+1)2+4动手做一做

回顾与反思已知图象上三点或三对的对应值,通常选择一般式已知图象的顶点坐标(对称轴和最值)通常选择顶点式已知图象与x轴的两个交点的横坐标x1、x2,通常选择交点式yxo确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式,已知四点A(1,2)、B(0,6)、C(-2,20)、D(-1,12)试问是否存在一个二次函数,使它的图像同时经过

这四个点?如果存在,请求出关系式;如果不存在,请说明理由.我思考,我进步1、若抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),求此抛物线解析式?2、已知二次函数的图像过点A(-1,0)、B(3,0),与y轴交于点C,且BC=,求二次函数关系式?做一做复习.1、一元二次方程ax2+bx+c=0的根的情况可由

确定。>

0=0<

0有两个不相等的实数根有两个相等的实数根没有实数根b2-4ac活动12、在式子h=50-20t2中,如果h=15,那么

50-20t2=

,如果h=20,那50-20t2=

,如果h=0,那50-20t2=

。如果要想求t的值,那么我们可以求

的解。15200方程问题1:如图,以40m/s的速度将小球沿与地面成30度角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2

考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)球的飞行高度能否达到20.5m?若能,需要多少时间?(4)球从飞出到落地要用多少时间?活动215=20t–5t2h=0ht20=20t–5t220.5=20t–5t20=20t–5t2解:(1)解方程15=20t-5t2即:

t2-4t+3=0t1=1,t2=3∴当球飞行1s和3s时,它的高度为15m。(2)解方程20=20t-5t2即:

t2-4t+4=0t1=t2=2

∴当球飞行2s时,它的高度为20m。(3)解方程20.5=20t-5t2即:

t2-4t+4.1=0

因为(-4)2-4×4.1<0,所以方程无解,∴球的飞行高度达不到20.5m。(4)解方程0=20t-5t2即:

t2-4t=0t1=0,t2=4∴球的飞行0s和4s时,它的高度为0m。即飞出到落地用了4s。

你能结合图形指出为什么在两个时间球的高度为15m吗?那么为什么只在一个时间求得高度为20m呢?那么为什么两个时间球的高度为零呢?从上面我们看出,对于二次函数h=20t–5t2中,已知h的值,求时间t?其实就是把函数值h换成常数,求一元二次方程的解。那么从上面,二次函数y=ax2+bx+c何时为一元二次方程?它们的关系如何?一般地,当y取定值时,二次函数为一元二次方程。如:y=5时,则5=ax2+bx+c就是一个一元二次方程。自由讨论为一个常数(定值)练习一:如图设水管AB的高出地面2.5m,在B处有一自动旋转的喷水头,喷出的水呈抛物线状,可用二次函数y=-0.5x2+2x+2.5描述,在所有的直角坐标系中,求水流的落地点D到A的距离是多少?解:根据题意得-0.5x2+2x+2.5=

0,解得x1=5,x2=-1(不合题意舍去)答:水流的落地点D到A的距离是5m。分析:根据图象可知,水流的落地点D的纵坐标为0,横坐标即为落地点D到A的距离。即:y=0

。想一想,这一个旋转喷水头,水流落地覆盖的最大面积为多少呢?1、二次函数y=x2+x-2,y=x2-6x+9,y=x2–x+1的图象如图所示。问题2(1).每个图象与x轴有几个交点?(2).一元二次方程?x2+x-2=0,x2-6x+9=0有几个根?

验证一下一元二次方程x2–x+1

=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?答:2个,1个,0个边观察边思考分析b2–4ac

>0b2–4ac

=0b2–4ac

<0OXY2、二次函数y=ax2+bx+c的图象和x轴交点,则b2-4ac的情况如何。.二次函数与一元二次方程的关系(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数值为0,因此x=x0就是方程y=ax2+bx+c的一个根2、二次函数y=ax2+bx+c的图象和x轴交点情况如何?(b2-4ac如何)

二次函数与一元二次方程b2–4ac>0b2–4ac=0b2–4ac<0思考:若抛物线y=ax2+bx+c与x轴有交点,则

b2-4ac.≥0(1)有两个交点(方程有两个不相等的实数根)(2)有一个交点(方程有两个相等的实数根)(3)没有交点(方程没有实数根)3.求抛物线①与y轴的交点坐标;②与x轴的两个交点间的距离.③何时y>0?练习1.已知抛物线y=x2-m

x+m-1.(2)若抛物线与y轴交于正半轴,则m______;(1)若抛物线经过坐标系原点,则m______;

(3)若抛物线的对称轴为y轴,则m______。(4)若抛物线与x轴只有一个交点,则m_______.

=1>1=2=02、不论x为何值时,函数y=ax2+bx+c(a≠0)

的值永远为正的条件是____

__a>0,△<0试一试CA

?练习:看谁算的又快又准。1.不与x轴相交的抛物线是()

Ay=2x2–3By=-2x2+3

Cy=-x2–2xDy=-2(x+1)2-32.如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=__,此时抛物线y=x2-2x+m与x轴有_

个交点.3.已知抛物线y=x2–8x+c的顶点在x轴上,则c=____.D11164.抛物线y=x2-3x+2与y轴交于点____,与x轴交于点____.(0,2)(1,0)(2,0)1.抛物线y=2x2-3x-5与y轴交于点____,与x轴交于点

.2.一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标是_____.归纳:一元二次方程ax2+bx+c=0的两个根为x1,x2

,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)(0,-5)(5/2,0)(-1,0)(-2,0)(5/3,0)(4)已知二次函数y=ax+bx+c的图象如图所示,则一元二次方程ax+bx+c=0的解是

.XY0522(5)若抛物线y=ax2+bx+c,当a>0,c<0时,图象与x轴交点情况是()A无交点B只有一个交点C有两个交点D不能确定CX1=0,x2=55.如图,抛物线y=ax2+bx+c的对称轴是直线x=-1,由图象知,关于x的方程ax2+bx+c=0的两个根分别是x1=1.3,x2=___6.已知抛物线y=kx2-7x-7的图象和x轴有交点,则

k的取值范围()-3.3BK≠0b2-4ac≥05.根据下列表格的对应值:

判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A3<X<3.23B3.23<X<3.24C3.24<X<3.25D3.25<X<3.26

x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09C例:已知二次函数y=2x2-(m+1)x+m-1(1)求证:无论m为何值,函数y的图像与x轴总有交点,并指出当m为何值时,只有一个交点。(2)当m为何值时,函数y的图像经过原点。(3)指出(2)的图像中,使y<0时,x的取值范围及使y>0时,x的取值范围例2:王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向、顶点坐标、对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.

解:(1) 抛物线开口向下,顶点为,对称轴为 (2)令,得:

解得:, ∴球飞行的最大水平距离是8m. (3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m

抛物线的对称轴为,顶点为 设此时对应的抛物线解析式为

又∵点在此抛物线上,∴CA●请你把这节课你学到了东西告诉你的同桌,然后告诉老师?交点b2-4ac>0b2-4ac<0b2-4ac=0两个交点没有交点一个交点二次函数与x轴的交点当二次函数y=ax2+bx+c中y的值确定,求x的值时,二次函数就变为一元二次方程。即当y取定值时,二次函数就为一元二次方程。二次函数与一元二次方程的关系二次函数与x轴的交点的横坐标是一元二次方程的解讨论这节课应有以下内容:走近中考1.已知函数的图象如图所示,那么关于的方程的根的情况是()A.无实数根 B.有两个相等实根C.有两个异号实数根D.有两个同号不等实数根D2.抛物线与轴只有一个公共点,则m的值为

.83.如图,抛物线的对称轴是直线且经过点(3,0),则的值为()A.0B.-1C.1D.2A4.二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根(2)写出不等式的解集.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论