二次函数的图象和性质_第1页
二次函数的图象和性质_第2页
二次函数的图象和性质_第3页
二次函数的图象和性质_第4页
二次函数的图象和性质_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22.1.3二次函数的图象和性质掌握二次函数的性质知识回顾

我们把形如y=ax²+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中x是自变量,a是二次项系数、b是一次项系数和c是常数项.y=ax²+bx+c(a≠0)叫做二次函数的一般形式.y=ax2a>0a<0图象开口对称性顶点增减性二次函数y=ax2的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点坐标是原点(0,0)顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减二次函数的图像例2.在同一直角坐标系中,画出二次函数y=x2+1和y=x2-1的图像解:先列表x…-3-2-10123…y=x2+1y=x2-1…105212510……830-1038…然后描点画图,得到y=x2+1,y=x2-1的图像.12345x12345678910yo-1-2-3-4-5y=x2+1y=x2-1二次函数的图像12345x12345678910yo-1-2-3-4-5(1)抛物线y=x2+1,y=x2-1的开口方向、对称轴、顶点各是什么?(2)抛物线y=x2+1,y=x2-1与抛物线y=x2有什么关系?讨论抛物线y=x2+1:开口向上,顶点为(0,1).对称轴是y轴,抛物线y=x2-1:开口向上,顶点为(0,-1).对称轴是y轴,y=x2+1y=x2-1二次函数的图像抛物线y=x2+1,y=x2-1与抛物线y=x2的关系:12345x12345678910yo-1-2-3-4-5y=x2+1抛物线y=x2抛物线y=x2-1向上平移1个单位把抛物线y=2x2+1向上平移5个单位,会得到那条抛物线?向下平移3.4个单位呢?抛物线y=x2向下平移1个单位思考(1)得到抛物线y=2x2+6(2)得到抛物线y=2x2-2.4y=x2-1y=x2抛物线y=x2+1归纳一般地,抛物线y=ax2+k有如下特点:(1)当a>0时,开口向上;(2)对称轴是y轴;(3)顶点是(0,k).是抛物线的最低点.12345x12345678910yo-1-2-3-4-5归纳一般地,抛物线y=ax2+k有如下特点:(1)当a<0时,开口向下;(2)对称轴是y轴;(3)顶点是(0,k).是抛物线的最高点抛物线y=ax2+k可以由抛物线y=ax2向上或向下平移|k|得到.(k>0,向上平移;k<0向下平移.)12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10y=ax2+ka>0a<0图象开口对称性顶点增减性二次函数y=ax2+k的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减(0,k)1

抛物线y=−2x2+3的顶点坐标是

,对称轴是

,在___

侧,y随着x的增大而增大;在

侧,y随着x的增大而减小,当x=_____时,函数y的值最大,最大值是

,它是由抛物线y=−2x2线怎样平移得到的__________.练一练

2

抛物线y=x²-5的顶点坐标是____,对称轴是___

_,在对称轴的左侧,y随着x的

;在对称轴的右侧,y随着x的

,当x=____时,函数y的值最___,最小值是

.练一练3、按下列要求求出二次函数的解析式:(1)已知抛物线y=ax2+c经过点(-3,2)(0,-1),求该抛物线的解析式。(2)形状与y=-2x2+3的图象形状相同,但开口方向不同,顶点坐标是(0,1)的抛物线解析式。(3)对称轴是y轴,顶点纵坐标是-3,且经过(1,2)的点的解析式,练一练2、在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致是如图中的()练一练(中考真题再现)某水渠的横截面呈抛物线形,水面的宽为AB(单位:米)。现以AB所在直线为x轴.以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论