量子力学英文课件格里菲斯Chapter4_第1页
量子力学英文课件格里菲斯Chapter4_第2页
量子力学英文课件格里菲斯Chapter4_第3页
量子力学英文课件格里菲斯Chapter4_第4页
量子力学英文课件格里菲斯Chapter4_第5页
已阅读5页,还剩148页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Outline

Thegeneralizationtothreedimensionsisstraight-forward.Schrödinger’sequationsayswheretheHamiltonianoperatorHisobtainedfromtheclassicalenergybythestandardprescription(appliednowtoyandz,aswellasx):orforshort.Thus,Schrödinger’sequation

[4.1]becomesisthe

Laplacian,inCartesiancoordinates.

Thepotentialenergy

Vandthewavefunction

arenowfunctionsofr=(x,y,z)andt.

Theprobabilityoffindingtheparticleininfinitesimalvolume

d3r=dxdydzis|(r,t)|2d3r.withtheintegraltakenoverallspace.

Ifthepotentialisindependentoftime,therewillbeacompletesetofstationarystates,Thenormalizationconditionofthewavefunctionreads

wherethespatialwavefunctionnsatisfiesthetime-independent

Schrödingerequation;

Thegeneralsolutiontothe(time-dependent)

Schrödingerequationiswiththeconstantcndeterminedbytheinitialwavefunction,(r,0),intheusualway.

Ifthepotentialadmitscontinuumstate,thenthesuminEq.[4.9]becomesanintegral.

Typically,thepotentialisafunctiononlyofthedistancefromtheorigin,i.e.V(r,,

)=V(r)

.Inthatcaseitisnaturaltoadoptsphericalcoordinates,(r,,)(seeFigure4.1).

InsphericalcoordinatestheLaplaciantakestheform

Insphericalcoordinates,then,thetime-independent

Schrödingerequationreads

Webeginbylookingforsolutionsthatareseparableintoproducts:PuttingthisintoEq.[4.14],wehaveDividingby(YR)andmultiplyingby-2mr2/ħ2

Theterminthefirstcurlybracketdependsonlyonr,whereastheremainder

dependsonlyon

and;accordingly,eachmustbeaconstant.Forreasonsthatwillappearinduecourse,wewillwritethis“separationconstant”intheforml(l+1).

NOTE:Eqs.[4.16]and[4.17]areequal

tothetime-independent

Schrödingerequation[4.14]!

Eq.[4.17]determinesthedependenceofonand;multiplyingby(Ysin2),itbecomes

TosolveEq.[4.18],wetryseparationofvariables:

PluggingthisinEq.[4.18],anddividingby,wefindThefirsttermisafunctiononlyof,andthesecondisafunctiononlyof,soeach

mustbeaconstant.Thistimewe’llcalltheseparationconstant

m2

:

(i).Theequation[4.21]iseasy:

Now,whenadvancesby2,wereturntothesamepointinspace(seeFigure4.1),soitisnaturaltorequirethatInotherwords,exp[im(+2)]=exp[im],orexp(i2m)=1.Fromthisitfollowsthatm

mustbean

integer

:(ii).Theequation[4.20]

maynotbesofamiliar.Thesolutionis

wherePlmistheassociatedLegendrefunction,definedbyandPl

(x)isthel-th

Legendrepolynomial.ForourpresentpurposesitismoreconvenienttodefinethembytheRodirgues(罗德里格)formula:

Forexample,ThefirstfewLegendrepolynomialswerelistedinTable3.1.Asthenamesuggests,Pl(x)isapolynomial(ofdegreel)inx,andisevenoroddaccordingtotheparityofl.

Moreover,if|m|>l,thenEq.[4.27]saysPlm

=0.Foranygivenl,then,thereare(2l+1)possiblevaluesofm:

NoticethatlmustbeanonnegativeintegerfortheRodriguesformulatomakeanysense.

Butwait!Eq.[4.25]isasecond-orderdifferentialequation:Itshouldhavetwolinearlyindependent

solutions,foranyoldvaluesoflandm.Wherearealltheothersolutions?

Answer:Theyexist,ofcourse,asmathematicalsolutionstotheequation,buttheyarephysically

unacceptablebecausetheyblowupat=0and/or=,anddonotyieldnormalizable

wavefunctions

(seeProblem4.4).

Now,thevolumeelementinsphericalcoordinatesissothenormalizationcondition(Eq.[4.6])becomesItisconvenienttonormalizeRandYindividually:

Thenormalizedangularwavefunctionsarecalledsphericalharmonics:where

=(-1)mform≥0and

=1

form≤0.Asweshallproveon,theyareautomaticallyorthogonal,soIntable4.2thereislistedthefirstfewsphericalharmonics.Noticethattheangularpartofthewavefunction,Y(,),isthesameforallsphericallysymmetricpotentials.

Theactualshapeofthepotential,V(r),affectsonlytheradialpartofthewavefunction,

R(r),whichisdeterminedbyEq.[4.16]:Thisequationsimplifiesifwechangevariables:Letthus,Eq.[3.35]becomesThisiscalledtheradialequation;itisidenticalinformtotheone-dimensionalSchrödingerequation(Eq.[2.4]),exceptthattheeffectivepotential,containsanextrapiece,centrifugalterm,(ħ2/2m)[l(l+1)/r2].

Ittendstothrowtheparticleoutward(awayfromtheorigin),justlikethecentrifugal(pseudo-)forceinclassicalmechanics.Meanwhile,thenormalizationcondition(Eq.[4.31])becomesWecannotproceedfurtheruntilaspecificpotentialisprovided.Example.Considerthe

infinitesphericalwellOutsidethewellthewavefunctioniszero;insidethewelltheradialequationsays

where

Ourproblemistosolvethisequation,subjecttotheboundarycondition:

u(a)=0.

Thecasel=0iseasy:Butremember,theactualradialwavefunctionisR(r)=u(r)/r,and[cos(kr)]/rblowsupasr0.SowemustchooseB=0.Theboundaryconditionthenrequiressin(ka)=0,andhenceka=n

forsomeintegern.TheallowedenergiesareevidentlyfromEq.[4.42]

thesameasfortheone-dimensionalinfinitesquarewell(Eq.[2.23]).Normalizingu(r)yields

Noticethatthestationarystatesarelabeledbythree

quantumnumbers,n,l,andm:nlm(r,,).

The

energy,however,dependsonlyonnandl:Enl.

ThegeneralsolutiontoEq.[4.41](foranarbitraryintegerl)isnotsofamiliar:wherejl(x)isthesphericalBesselfunctionoforderl,andnl(x)isthe

sphericalNeumannfunctionoforderl.ThesphericalBesselfunctionandthe

sphericalNeumannfunctionaredefinedasfollows:Forexample,ThefirstfewsphericalBesselandNeumannfunctionsarelistedinTable4.3.

Noticethatforsmallx,since

ThepointisthattheBesselfunctionsarefiniteattheorigin,buttheNeumannfunctionsblowupattheorigin.Accordingly,wemusthaveBl

=0,andhenceThereremainstheboundarycondition,R(a)=0.Evidentlykmustbechosensuchthatthatis,(ka)isazeroofthelth

–ordersphericalBesselfunctions.

NowtheBesselfunctionsareoscillatory(seeFigure4.2);eachonehasaninfinitenumberofzeros.Figure4.2:GraphsofthefirstfoursphericalBesselfunctions.Atanyrate,theboundaryconditionrequiresthatwherenlisthenth

zeroofthe

lth

sphericalBesselfunction.

The

allowed

energies,then,aregivenbyandthewavefunctionsarewiththeconstantAnltobedeterminedbynormalization.

Eachenergylevelis(2l+1)-folddegenerate,sincethereare(2l+1)differentvaluesofmforeachvalueofl(seeEq.[4.29]).Homework:

Problem4.1,Problem4.9.Thehydrogenatomconsistsofaheavy,essentiallymotionlessprotonofcharge+e,togetherwithamuchlighterelectron(charge–e)thatcirclesaroundit,heldinorbitbythemutualattractionofoppositecharges(seeFigure4.3).

FromCoulomb'slaw,thepotentialenergy(inSIunits)is

andtheradialequation(Eq.[4.37])saysOurproblemistosolvethisequationforu(r)anddeterminetheallowedelectronenergies

E.Thehydrogenatomissuchanimportantcasethatwe'llworkthemoutindetailbythemethodweusedintheanalyticalsolutiontotheharmonicoscillator.Incidentally,theCoulombpotential(Eq.[4.52])admitscontinuumstates(withE>0),describingelectron-protonscattering,aswellasdiscreteboundstates,representingthehydrogenatom,butweshallconfineourattentiontothelatter.Ourfirsttaskistotidyupthenotation.LetForboundstates,E<0,so

isreal.DividingEq.[4.53]byE,wehaveThissuggeststhatweletNextweexaminetheasymptoticformofthesolutions.

(1)As

theconstantterminthebracketsdominates,so(approximately)(2)As0

thecentrifugaltermdominates;approximatelythen,

ThenextstepistopeelofftheasymptoticbehaviorEqs.[4.58]and[4.59],introducingthenewfunctionv():Thefirstindicationsarenotauspicious:Then,theradialequation(Eq.[4.56])readsFinally,weassumethesolution,v(),canbeexpressedasapowerseriesin:

Ourproblemistodeterminethecoefficients(a0,al,a2,…).DifferentiatingEq.[4.62]termbytermDifferentiatingagain,InsertingtheseintoEq.[4.61],wehaveEquatingthecoefficientsoflikepowersyieldsThisrecursionformuladeterminesthecoefficients,andhencethefunction

v():

Westartwitha0=A,andEq.[4.63]givesusa1,puttingthisbackin,weobtaina2,andsoon.Nowlet’sseewhatthecoefficientslooklikeforlarge

j(thiscorrespondstolarge

,wherethehigherpowersdominate).

Inthisregimetherecursionformulasays

soSupposeforamomentthatthisweretheexactresult.Thenandhencewhichblowsupatlarge.Thepositiveexponentialispreciselytheasymptoticbehaviorwedidn’twantinEq.[4.57].

Thereisonlyonewayoutofthisdilemma:Theseriesmustterminate.Theremustoccursomemaximalinteger,jmax,suchthatandbeyondwhichallcoefficientsvanishautomatically.

Evidently(Eq.[4.63])theso-called

principalquantumnumber,wehaveBut0

determinesE(seeEqs.[4.54]and[4.55]):sotheallowedenergiesareThisisthefamous

Bohrformula

-byanymeasurethemostimportantresultinallofquantummechanics.istheso-calledBohrradius.Itfollows(again,fromEq.[4.55])thatCombiningEqs.[4.55]and[4.68],wefindthat

Evidentlythespatial

wavefunctionsforhydrogenarelabeledbythree

quantumnumbers(n,l,andm):where(referringbacktoEqs.[4.36]and[4.60])andv()isapolynomialofdegree,jmax=nl1in,whosecoefficientsaredeterminedbytherecursionformula

Thegroundstate(thatis,thestateoflowestenergy)isthecasen=1;puttingintheacceptedvaluesforthephysicalconstants,wegetEvidentlythebindingenergyofhydrogenis13.6eV.

Example1:

n=1

Equation[4.67]forcesl=0,whencealsom=0(seeEq.[4.29]),soTherecursionformulatruncatesafterthefirstterm(Eq.[4.76]withj=0yieldsa1=0),sov()isaconstant(a0)

andExample2:

n=2Ifn=2,theenergyisthisisthefirstexcitedstate.

Sincewecanhaveeitherl=0(inwhichcasem=0)orl=1(withm=1,0,or+1),sothereareactuallyfourdifferentstatesthatsharethisenergy.Ifl=0,therecursionrelation(Eq.[4.76])gives

sov()=a0(1),andhenceIfl=1,therecursionformulaterminatestheseriesafterasingleterm,sov()isaconstant,andwefindIneachcasetheconstant

a0istobedeterminedbynormalization(seeProblem4.11).

Forarbitraryn,thepossiblevaluesofl(consistentwithEq.[4.67])areForeachl,thereare(2l+1)possiblevaluesofmEq.[4.29],sothetotaldegeneracyoftheenergylevelEnisThepolynomial

v()isafunctionwellknowntoappliedmathematicians;apartfromnormalization,itcanbewrittenasisanassociatedLaguerrepolynomial,andistheqth

Laguerrepolynomial.ThefirstfewLaguerrepolynomialsarelistedinTable4.4.

SomeassociatedLaguerrepolynomialsaregiveninTable4.5.Table4.6Thefirstfewradialwavefunctionsforhydrogen,Rnl(r)Figure4.4GraphsofthefirstfewhydrogenradialwavefunctionsThenormalizedhydrogenwavefunctionsareTheyarenotpretty,butdon’tcomplain-thisisoneoftheveryfewrealisticsystemsthatcanbesolvedatall,inexactclosedform.Aswewillprovelateron,theyaremutuallyorthogonal:

Visualizingthehydrogenwavefunctionsisnoteasy.Chemistsliketodraw“densityplots”,inwhichthebrightnessofthecloudisproportionalto|nlm|2(Fig.4.5).Morequantitativearesurfacesofconstantprobabilitydensity(Fig.4.6).Homework:

Problem4.14,Problem4.15.

Inprinciple,ifyouputahydrogenatomintosomestationarystate

nlm,itshouldstaythereforever.

However,ifyoutickleitslightly,thentheatommayundergoatransitiontosomeotherstationarystate-eitherbyabsorbing

energyandmovinguptoahigher-energystate,orbygivingoff

energyandmovingdown.Theresultisthatacontainerofhydrogengivesofflight(photons),whoseenergycorrespondstothedifferenceinenergybetweentheinitialandfinalstates:

Inpracticesuchperturbationsarealwayspresent;transitions(or,quantumjumps)areconstantlyoccurring.Now,accordingtothe

Planckformula,theenergyofaphotonisproportionaltoitsfrequency

:Meanwhile,thewavelengthisgiven=c/

,soRisknownastheRydbergconstant,andEq.[4.93]istheRydbergformulaforthespectrumofhydrogen.

Itwasdiscoveredempiricallyinthenineteenthcentury,andthegreatesttriumphofBohr’stheorywasitsabilitytoaccountforthisresult-andtocalculateRintermsofthefundamentalconstantsofnature.Transitionstothegroundstate(nf

=1)lieintheultraviolet;theyareknowntospectroscopistsastheLymanseries.

Transitionstothefirstexcitedstate(nf=2)fallinthevisibleregion;theyconstitutetheBaimerseries.Transitionstonf

=3(the

Paschenseries)areintheinfrared,andsoon(seeFigure4.5).

Inclassicalmechanics,theangularmomentumofaparticle(withrespecttotheorigin)isgivenbytheformulawhichistosay,Thecorrespondingquantum

operatorsareobtainedbythestandardprescription(Eq.[4.2]):Inthefollowingsectionswewilldeducetheeigenvaluesandeigenfunctionsoftheseoperators.

LxandL

ydonotcommute;infact[providingatestfunction,f(x,y,z),forthemtoactupon]:Allthetermscancelinpairs(byvirtueoftheequalityofcross-derivatives)excepttwo:andweconclude(droppingthetestfunction)

Bycyclicpermutationoftheindicesitfollowsalsothat

Fromthesefundamentalcommutationrelationstheentiretheoryofangularmomentumcanbededuced!

EvidentlyLx,Ly,andLzareincompatibleobservables.Accordingtothegeneralizeduncertaintyprinciple(Eq.[3.139]),

or

Itwouldthereforebefutiletolookforstatesthataresimultaneously

eigenfunctionsofLxandofLy.

Ontheotherhand,thesquareofthetotal

angularmomentum,does

commutewithLx:Itfollows,ofcourse,L2alsocommuteswithLyandLz

,

or,morecompactly,

SoL2iscompatiblewitheachcomponentofL,andwecanhopetofindsimultaneous

eigenstatesofL2and(say)Lz:

Next,we’llusea“ladderoperator”techniquetofindtheeigenstatesandeigenvalues,verysimilartotheoneweappliedtotheharmonicoscillatorbackinSection2.3.1.LetItscommutatorwithLzis

Tofindthe

eigenvaluesofangularmomentum

followingIffisaneigenfunctionofL2andLz

,soalsoisL±f.

Proof:ByusingofEq.[4.104],forEq.[4.107]sayssoL±fisaneigenfunctionofL2,withthesameeigenvalue

.

andEq.[4.106]sayssoL±fisaneigenfunctionofLzwiththenew

eigenvalue

ħ.QED

L+iscalledthe“raising”operatorbecauseitincreasestheeigenvalueofLzbyħ.Liscalledthe“lowering”operatorbecauseitlowerstheeigenvaluebyħ.Foragivenvalueof,then,weobtaina“ladder”ofstates,witheach“rung”separatedfromitsneighborsbyoneunitofħintheeigenvalueof

Lz

(seeFigure4.6).

Toascendtheladderweapplytheraisingoperator,andtodescend,theloweringoperator.

Butthisprocesscannotgoonforever:Eventuallywe’regoingtoreachastateforwhichthez-componentexceedsthetotal,andthatcannotbe(seeProblem4.18).

Sotheremustexista“toprung”,ft

,suchthat

LetħlbetheeigenvalueofLz

atthistoprungNowor,puttingittheotherwayaround,Itfollowsthat

ThistellsustheeigenvalueofL2intermsofthemaximum

eigenvalueofLz.

Meanwhile,thereisalso(forthesamereason)abottomrung,fb

,suchthatUsingEquation4.112,wehaveComparingEqs.[4.113]and[4.116],weseethat

EvidentlytheeigenvaluesofLzaremħ

,wheremgoesfromlto+lin

Nintegersteps.Inparticular,itfollowsthatl=

l+N,andhence

Youmightreasonablyguessthatthehalf-integersolutionsarespurious,butitturnsoutthattheyareofprofoundimportance,asweshallseeinthefollowingsections.solmustbe

an

integeror

a

half-integer!

Now,theeigenfunctionsarecharacterizedbythenumberslandm:whereForagivenvalueofl,thereare2l+1differentvaluesofm(i.e.,2l+1“rungs”onthe“ladder”).

FirstofallweneedtorewriteLx,Ly,andLzinsphericalcoordinates.Nowandthegradient,insphericalcoordinates,isButasshownbyFig.4.1:andhenceThusEvidently,Weshallalsoneedtheraisingandloweringoperators:Wearenowinapositiontodeterminetheeigenfunction

—flm(,).Assumeit’saneigenfunctionofLz

,witheigenvalue

ħm:

Hereg()isaconstantofintegration,asfarasisconcerned,butitcanstilldependon.

Adifferentialequarionforg()canbewritten(seethetextbook)inamorefamiliarform(seeSection4.1.2):

whichispreciselytheequationforthe

-dependentpart,(),ofYlm(,)(compareEq.[4.25]).Meanwhile,the-dependentpartoffisidenticalto()(Eq.[4.22]).

Ontheotherhand,fisalsoaneigenfunctionofL2,witheigenvalue

ħ2l(l+1):Conclusion:The

sphericalharmonics

arepreciselythe

(normalized)

eigenfunctionsofL2

and

Lz

.

WhenwesolvedtheSchrödingerequationbyseparationofvariables,inSection4.1,wewereinadvertantlyconstructingsimultaneous

eigenfunctionsofthethree

commutingoperators

H,L2,andLz

:Homework:

Problem4.19,

Problem4.22.

Inclassicalmechanics,arigidobjectadmitstwokindsofangularmomentum:orbital(L=rp),associatedwiththemotionofthecenterofmass,andspin(S=I),associatedwithmotionaboutthecenterofmass.

Forexample,theearthhas

orbitalangularmomentumattributabletoitsannualrevolutionaroundthesun,and

spinangularmomentumcomingfromitsdailyrotationaboutthenorth-southaxis.Inquantummechanics,however,andherethedistinctionisabsolutelyfundamental.

Forexample,inthecaseofhydrogen:

orbitalangularmomentum

associatedwiththemotionoftheelectronaroundthenucleus(anddescribedbythesphericalharmonicsfunctions).

Theelectronisastructurelesspointparticle,anditsspinangularmomentumcannotbedecomposedintoorbitalangularmomentaofconstituentparts.

Sufficeittosaythatelementaryparticlescarryintrinsic

angularmomentum(S)inadditiontotheir“extrinsic”angularmomentum(L)!

Thealgebraictheoryofspinisacarboncopyofthetheoryoforbitalangularmomentum.

Beginningwiththefundamentalcommutationrelations:

Itfollows(asbefore)thattheeigenvectorsofS2andSzsatisfywhereS

Sx

iSy.

Butthistimetheeigenvectorsarenot

sphericalharmonics(they’renotfunctionsofandatall).Thereisnoapriorireasontoexcludethehalf-integervaluesofsandm:

Itsohappensthateveryelementaryparticlehasaspecific

andimmutablevalueofs,whichwecallthespinofthatparticularspecies:pimesons()havespins=0electrons(e)havespins=l/2photons()havespins=ldeltashavespins=3/2gravitons(引力子)havespins=2andsoon.

Bycontrast,theorbitalangularmomentum

quantumnumber

lcantakeonany(integer)valueyouplease,andwillchangefromonetoanotherwhenthesystemisperturbed.

Butspinangularmomentum

quantumnumber

s

isfixed,foranygivenparticle,andthismakesthetheoryofspincomparativelysimple.

Themostimportantcaseiss=1/2,forthisisthespinoftheparticlesthatmakeupordinarymatter(protons,neutrons,andelectrons),aswellasallquarksandallleptons.

Moreover,onceyouunderstandspinl/2,itisasimplemattertoworkouttheformalismforanyhigherspin.Therearejust

two

eigenstates:

Usingtheseasbasisvectors,thegeneralstateofaspin-l/2particlecanbeexpressedasatwo-elementcolumnmatrix(orspinor):

Meanwhile,thespinoperators2×2matrices,whichwecanworkoutbynotingtheireffecton+and:

Eq.[4.135]saysandEq.[4.136]givesNow,S

Sx

iSy,soanditfollowsthat

ThuswhileIt'salittletidiertodivideoffthefactorofħ/2:

ThesearethefamousPaulispinmatrices.NoticethatSx

,

Sy

,

Sz

,andS2

areallHermitian(astheyshouldbe,sincetheyrepresentobservables).

Ontheotherhand,S+

andSare

not

Hermitianevidentlytheyarenotobservable.TheeigenspinorsofSzare(ofcourse)

IfyoumeasureSzonaparticleinthegeneralstate(Eq.[4.139]),youcouldget+ħ/2,withprobability|a|2,orħ/2,withprobability|b|2.

Sincethesearetheonlypossibilities,

Butwhatifyouchosetomeasure

Sx?Whatarethepossibleresults,andwhataretheirrespectiveprobabilities?Accordingtothegeneralizedstatisticalinterpretation,weneedtoknowtheeigenvaluesandeigenspinorsof

Sx.ThecharacteristicequationofSxisNotsurprisingly,thepossiblevaluesfor

Sxarethesameasthosefor

Sz.

Theeigenspinorsareobtainedintheusualway:so,

=

.

Evidentlythe(normalized)eigenspinors

ofSx

areAstheeigenvectorsofaHermitianmatrix,theyspanthespace:thegenericspinor

canbeexpressedasalinearcombinationofthem:Ifyoumeasure

Sxinthestate

:

theprobabilityofgetting+ħ/2is(1/2)|a+b|2,and

theprobabilityofgettingħ/2is(1/2)|ab|2.Example.Supposeaspinl/2particleisinthestateEvidentlytheexpectationvalueofSxis

whichwecouldalsohaveobtainedmoredirectly:Homework:

Problem4.27,Problem4.30.

Aspinningchargedparticleconstitutesamagneticdipole.

Itsmagneticdipolemoment

isproportionaltoitsspinangularmomentum

S:

theproportionalityconstantiscalledthegyromagneticratio(旋磁比).

WhenamagneticdipoleisplacedinamagneticfieldB,itexperiencesatorque(扭转力/转矩),B,whichtendstolineitupparalleltothefield(justlikeacompassneedle).

Theenergyassociatedwiththistorqueis

sotheHamiltonianofaspinningchargedparticle,atrestinamagneticfield

B,becomes

whereSistheappropriatespinmatrix(Eq.[4.147],inthecaseofspin1/2).Example:

Larmorprecession(进动/旋进).

Imagineaparticleofspin1/2atrestinauniformmagneticfield,whichpointsinthez-direction:TheHamiltonian

matrixisTheeigenstatesofHarethesameasthoseofSzEvidently,theenergyislowestwhenthedipolemomentisparalleltothefield一justasitwouldbeclassically.SincetheHamiltonianistimeindependent,thegeneralsolutiontothetime-dependentSchrodingerequation,canbeexpressedintermsofthestationarystates:Theconstantsaandbaredeterminedbytheinitialconditions,say

where|a|2+|b|2=1.

Withnoessentiallossofgenerality,we’llwritewherefixedanglewhosephysicalsignificancewillappearinamoment.

ThusTogetafeelforwhatishappeninghere,let’scalculatetheexpectationvalueofthespinSasafunctionoftime:Similarity,EvidentlySistitledataconstantangletothez-axis,andprecessesaboutthefieldattheLarmorfrequency

justasitwouldclassically(seeFigure4.7).Example:theStern-Gerlachexperiment.

Inaninhomogeneous

magneticfield,thereisnotonlyatorque,butalsoaforce,onamagneticdipole:Thisforcecanbeusedtoseparateoutparticleswithaparticularspinorientation(方向).asfollows.

Imagineabeamofrelativelyheavyneutral(中性的)atoms,travelinginthey-direction,whichpassesthrougharegionofinhomogeneousmagneticfield(Figure4.8)Forexample,whereB0

isastronguniformfieldandtheconstantdescribesasmalldeviationfromhomogeneity.

TheforceontheseatomsisButbecauseoftheLarmorprecessionaboutB0,Sxoscillatesrapidly,andaveragestozero;thenet

forceisinthez-direction:andthebeamisdeflectedupordown,inproportiontothez-componentofthespinangularmomentum.Classicallywe’dexpectasmear,butinfactthebeamsplitsinto2s+1individualbeams,beautifullydemons

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论