




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Outline
Thegeneralizationtothreedimensionsisstraight-forward.Schrödinger’sequationsayswheretheHamiltonianoperatorHisobtainedfromtheclassicalenergybythestandardprescription(appliednowtoyandz,aswellasx):orforshort.Thus,Schrödinger’sequation
[4.1]becomesisthe
Laplacian,inCartesiancoordinates.
Thepotentialenergy
Vandthewavefunction
arenowfunctionsofr=(x,y,z)andt.
Theprobabilityoffindingtheparticleininfinitesimalvolume
d3r=dxdydzis|(r,t)|2d3r.withtheintegraltakenoverallspace.
Ifthepotentialisindependentoftime,therewillbeacompletesetofstationarystates,Thenormalizationconditionofthewavefunctionreads
wherethespatialwavefunctionnsatisfiesthetime-independent
Schrödingerequation;
Thegeneralsolutiontothe(time-dependent)
Schrödingerequationiswiththeconstantcndeterminedbytheinitialwavefunction,(r,0),intheusualway.
Ifthepotentialadmitscontinuumstate,thenthesuminEq.[4.9]becomesanintegral.
Typically,thepotentialisafunctiononlyofthedistancefromtheorigin,i.e.V(r,,
)=V(r)
.Inthatcaseitisnaturaltoadoptsphericalcoordinates,(r,,)(seeFigure4.1).
InsphericalcoordinatestheLaplaciantakestheform
Insphericalcoordinates,then,thetime-independent
Schrödingerequationreads
Webeginbylookingforsolutionsthatareseparableintoproducts:PuttingthisintoEq.[4.14],wehaveDividingby(YR)andmultiplyingby-2mr2/ħ2
Theterminthefirstcurlybracketdependsonlyonr,whereastheremainder
dependsonlyon
and;accordingly,eachmustbeaconstant.Forreasonsthatwillappearinduecourse,wewillwritethis“separationconstant”intheforml(l+1).
NOTE:Eqs.[4.16]and[4.17]areequal
tothetime-independent
Schrödingerequation[4.14]!
Eq.[4.17]determinesthedependenceofonand;multiplyingby(Ysin2),itbecomes
TosolveEq.[4.18],wetryseparationofvariables:
PluggingthisinEq.[4.18],anddividingby,wefindThefirsttermisafunctiononlyof,andthesecondisafunctiononlyof,soeach
mustbeaconstant.Thistimewe’llcalltheseparationconstant
m2
:
(i).Theequation[4.21]iseasy:
Now,whenadvancesby2,wereturntothesamepointinspace(seeFigure4.1),soitisnaturaltorequirethatInotherwords,exp[im(+2)]=exp[im],orexp(i2m)=1.Fromthisitfollowsthatm
mustbean
integer
:(ii).Theequation[4.20]
maynotbesofamiliar.Thesolutionis
wherePlmistheassociatedLegendrefunction,definedbyandPl
(x)isthel-th
Legendrepolynomial.ForourpresentpurposesitismoreconvenienttodefinethembytheRodirgues(罗德里格)formula:
Forexample,ThefirstfewLegendrepolynomialswerelistedinTable3.1.Asthenamesuggests,Pl(x)isapolynomial(ofdegreel)inx,andisevenoroddaccordingtotheparityofl.
Moreover,if|m|>l,thenEq.[4.27]saysPlm
=0.Foranygivenl,then,thereare(2l+1)possiblevaluesofm:
NoticethatlmustbeanonnegativeintegerfortheRodriguesformulatomakeanysense.
Butwait!Eq.[4.25]isasecond-orderdifferentialequation:Itshouldhavetwolinearlyindependent
solutions,foranyoldvaluesoflandm.Wherearealltheothersolutions?
Answer:Theyexist,ofcourse,asmathematicalsolutionstotheequation,buttheyarephysically
unacceptablebecausetheyblowupat=0and/or=,anddonotyieldnormalizable
wavefunctions
(seeProblem4.4).
Now,thevolumeelementinsphericalcoordinatesissothenormalizationcondition(Eq.[4.6])becomesItisconvenienttonormalizeRandYindividually:
Thenormalizedangularwavefunctionsarecalledsphericalharmonics:where
=(-1)mform≥0and
=1
form≤0.Asweshallproveon,theyareautomaticallyorthogonal,soIntable4.2thereislistedthefirstfewsphericalharmonics.Noticethattheangularpartofthewavefunction,Y(,),isthesameforallsphericallysymmetricpotentials.
Theactualshapeofthepotential,V(r),affectsonlytheradialpartofthewavefunction,
R(r),whichisdeterminedbyEq.[4.16]:Thisequationsimplifiesifwechangevariables:Letthus,Eq.[3.35]becomesThisiscalledtheradialequation;itisidenticalinformtotheone-dimensionalSchrödingerequation(Eq.[2.4]),exceptthattheeffectivepotential,containsanextrapiece,centrifugalterm,(ħ2/2m)[l(l+1)/r2].
Ittendstothrowtheparticleoutward(awayfromtheorigin),justlikethecentrifugal(pseudo-)forceinclassicalmechanics.Meanwhile,thenormalizationcondition(Eq.[4.31])becomesWecannotproceedfurtheruntilaspecificpotentialisprovided.Example.Considerthe
infinitesphericalwellOutsidethewellthewavefunctioniszero;insidethewelltheradialequationsays
where
Ourproblemistosolvethisequation,subjecttotheboundarycondition:
u(a)=0.
Thecasel=0iseasy:Butremember,theactualradialwavefunctionisR(r)=u(r)/r,and[cos(kr)]/rblowsupasr0.SowemustchooseB=0.Theboundaryconditionthenrequiressin(ka)=0,andhenceka=n
forsomeintegern.TheallowedenergiesareevidentlyfromEq.[4.42]
thesameasfortheone-dimensionalinfinitesquarewell(Eq.[2.23]).Normalizingu(r)yields
Noticethatthestationarystatesarelabeledbythree
quantumnumbers,n,l,andm:nlm(r,,).
The
energy,however,dependsonlyonnandl:Enl.
ThegeneralsolutiontoEq.[4.41](foranarbitraryintegerl)isnotsofamiliar:wherejl(x)isthesphericalBesselfunctionoforderl,andnl(x)isthe
sphericalNeumannfunctionoforderl.ThesphericalBesselfunctionandthe
sphericalNeumannfunctionaredefinedasfollows:Forexample,ThefirstfewsphericalBesselandNeumannfunctionsarelistedinTable4.3.
Noticethatforsmallx,since
ThepointisthattheBesselfunctionsarefiniteattheorigin,buttheNeumannfunctionsblowupattheorigin.Accordingly,wemusthaveBl
=0,andhenceThereremainstheboundarycondition,R(a)=0.Evidentlykmustbechosensuchthatthatis,(ka)isazeroofthelth
–ordersphericalBesselfunctions.
NowtheBesselfunctionsareoscillatory(seeFigure4.2);eachonehasaninfinitenumberofzeros.Figure4.2:GraphsofthefirstfoursphericalBesselfunctions.Atanyrate,theboundaryconditionrequiresthatwherenlisthenth
zeroofthe
lth
sphericalBesselfunction.
The
allowed
energies,then,aregivenbyandthewavefunctionsarewiththeconstantAnltobedeterminedbynormalization.
Eachenergylevelis(2l+1)-folddegenerate,sincethereare(2l+1)differentvaluesofmforeachvalueofl(seeEq.[4.29]).Homework:
Problem4.1,Problem4.9.Thehydrogenatomconsistsofaheavy,essentiallymotionlessprotonofcharge+e,togetherwithamuchlighterelectron(charge–e)thatcirclesaroundit,heldinorbitbythemutualattractionofoppositecharges(seeFigure4.3).
FromCoulomb'slaw,thepotentialenergy(inSIunits)is
andtheradialequation(Eq.[4.37])saysOurproblemistosolvethisequationforu(r)anddeterminetheallowedelectronenergies
E.Thehydrogenatomissuchanimportantcasethatwe'llworkthemoutindetailbythemethodweusedintheanalyticalsolutiontotheharmonicoscillator.Incidentally,theCoulombpotential(Eq.[4.52])admitscontinuumstates(withE>0),describingelectron-protonscattering,aswellasdiscreteboundstates,representingthehydrogenatom,butweshallconfineourattentiontothelatter.Ourfirsttaskistotidyupthenotation.LetForboundstates,E<0,so
isreal.DividingEq.[4.53]byE,wehaveThissuggeststhatweletNextweexaminetheasymptoticformofthesolutions.
(1)As
theconstantterminthebracketsdominates,so(approximately)(2)As0
thecentrifugaltermdominates;approximatelythen,
ThenextstepistopeelofftheasymptoticbehaviorEqs.[4.58]and[4.59],introducingthenewfunctionv():Thefirstindicationsarenotauspicious:Then,theradialequation(Eq.[4.56])readsFinally,weassumethesolution,v(),canbeexpressedasapowerseriesin:
Ourproblemistodeterminethecoefficients(a0,al,a2,…).DifferentiatingEq.[4.62]termbytermDifferentiatingagain,InsertingtheseintoEq.[4.61],wehaveEquatingthecoefficientsoflikepowersyieldsThisrecursionformuladeterminesthecoefficients,andhencethefunction
v():
Westartwitha0=A,andEq.[4.63]givesusa1,puttingthisbackin,weobtaina2,andsoon.Nowlet’sseewhatthecoefficientslooklikeforlarge
j(thiscorrespondstolarge
,wherethehigherpowersdominate).
Inthisregimetherecursionformulasays
soSupposeforamomentthatthisweretheexactresult.Thenandhencewhichblowsupatlarge.Thepositiveexponentialispreciselytheasymptoticbehaviorwedidn’twantinEq.[4.57].
Thereisonlyonewayoutofthisdilemma:Theseriesmustterminate.Theremustoccursomemaximalinteger,jmax,suchthatandbeyondwhichallcoefficientsvanishautomatically.
Evidently(Eq.[4.63])theso-called
principalquantumnumber,wehaveBut0
determinesE(seeEqs.[4.54]and[4.55]):sotheallowedenergiesareThisisthefamous
Bohrformula
-byanymeasurethemostimportantresultinallofquantummechanics.istheso-calledBohrradius.Itfollows(again,fromEq.[4.55])thatCombiningEqs.[4.55]and[4.68],wefindthat
Evidentlythespatial
wavefunctionsforhydrogenarelabeledbythree
quantumnumbers(n,l,andm):where(referringbacktoEqs.[4.36]and[4.60])andv()isapolynomialofdegree,jmax=nl1in,whosecoefficientsaredeterminedbytherecursionformula
Thegroundstate(thatis,thestateoflowestenergy)isthecasen=1;puttingintheacceptedvaluesforthephysicalconstants,wegetEvidentlythebindingenergyofhydrogenis13.6eV.
Example1:
n=1
Equation[4.67]forcesl=0,whencealsom=0(seeEq.[4.29]),soTherecursionformulatruncatesafterthefirstterm(Eq.[4.76]withj=0yieldsa1=0),sov()isaconstant(a0)
andExample2:
n=2Ifn=2,theenergyisthisisthefirstexcitedstate.
Sincewecanhaveeitherl=0(inwhichcasem=0)orl=1(withm=1,0,or+1),sothereareactuallyfourdifferentstatesthatsharethisenergy.Ifl=0,therecursionrelation(Eq.[4.76])gives
sov()=a0(1),andhenceIfl=1,therecursionformulaterminatestheseriesafterasingleterm,sov()isaconstant,andwefindIneachcasetheconstant
a0istobedeterminedbynormalization(seeProblem4.11).
Forarbitraryn,thepossiblevaluesofl(consistentwithEq.[4.67])areForeachl,thereare(2l+1)possiblevaluesofmEq.[4.29],sothetotaldegeneracyoftheenergylevelEnisThepolynomial
v()isafunctionwellknowntoappliedmathematicians;apartfromnormalization,itcanbewrittenasisanassociatedLaguerrepolynomial,andistheqth
Laguerrepolynomial.ThefirstfewLaguerrepolynomialsarelistedinTable4.4.
SomeassociatedLaguerrepolynomialsaregiveninTable4.5.Table4.6Thefirstfewradialwavefunctionsforhydrogen,Rnl(r)Figure4.4GraphsofthefirstfewhydrogenradialwavefunctionsThenormalizedhydrogenwavefunctionsareTheyarenotpretty,butdon’tcomplain-thisisoneoftheveryfewrealisticsystemsthatcanbesolvedatall,inexactclosedform.Aswewillprovelateron,theyaremutuallyorthogonal:
Visualizingthehydrogenwavefunctionsisnoteasy.Chemistsliketodraw“densityplots”,inwhichthebrightnessofthecloudisproportionalto|nlm|2(Fig.4.5).Morequantitativearesurfacesofconstantprobabilitydensity(Fig.4.6).Homework:
Problem4.14,Problem4.15.
Inprinciple,ifyouputahydrogenatomintosomestationarystate
nlm,itshouldstaythereforever.
However,ifyoutickleitslightly,thentheatommayundergoatransitiontosomeotherstationarystate-eitherbyabsorbing
energyandmovinguptoahigher-energystate,orbygivingoff
energyandmovingdown.Theresultisthatacontainerofhydrogengivesofflight(photons),whoseenergycorrespondstothedifferenceinenergybetweentheinitialandfinalstates:
Inpracticesuchperturbationsarealwayspresent;transitions(or,quantumjumps)areconstantlyoccurring.Now,accordingtothe
Planckformula,theenergyofaphotonisproportionaltoitsfrequency
:Meanwhile,thewavelengthisgiven=c/
,soRisknownastheRydbergconstant,andEq.[4.93]istheRydbergformulaforthespectrumofhydrogen.
Itwasdiscoveredempiricallyinthenineteenthcentury,andthegreatesttriumphofBohr’stheorywasitsabilitytoaccountforthisresult-andtocalculateRintermsofthefundamentalconstantsofnature.Transitionstothegroundstate(nf
=1)lieintheultraviolet;theyareknowntospectroscopistsastheLymanseries.
Transitionstothefirstexcitedstate(nf=2)fallinthevisibleregion;theyconstitutetheBaimerseries.Transitionstonf
=3(the
Paschenseries)areintheinfrared,andsoon(seeFigure4.5).
Inclassicalmechanics,theangularmomentumofaparticle(withrespecttotheorigin)isgivenbytheformulawhichistosay,Thecorrespondingquantum
operatorsareobtainedbythestandardprescription(Eq.[4.2]):Inthefollowingsectionswewilldeducetheeigenvaluesandeigenfunctionsoftheseoperators.
LxandL
ydonotcommute;infact[providingatestfunction,f(x,y,z),forthemtoactupon]:Allthetermscancelinpairs(byvirtueoftheequalityofcross-derivatives)excepttwo:andweconclude(droppingthetestfunction)
Bycyclicpermutationoftheindicesitfollowsalsothat
Fromthesefundamentalcommutationrelationstheentiretheoryofangularmomentumcanbededuced!
EvidentlyLx,Ly,andLzareincompatibleobservables.Accordingtothegeneralizeduncertaintyprinciple(Eq.[3.139]),
or
Itwouldthereforebefutiletolookforstatesthataresimultaneously
eigenfunctionsofLxandofLy.
Ontheotherhand,thesquareofthetotal
angularmomentum,does
commutewithLx:Itfollows,ofcourse,L2alsocommuteswithLyandLz
,
or,morecompactly,
SoL2iscompatiblewitheachcomponentofL,andwecanhopetofindsimultaneous
eigenstatesofL2and(say)Lz:
Next,we’llusea“ladderoperator”techniquetofindtheeigenstatesandeigenvalues,verysimilartotheoneweappliedtotheharmonicoscillatorbackinSection2.3.1.LetItscommutatorwithLzis
Tofindthe
eigenvaluesofangularmomentum
followingIffisaneigenfunctionofL2andLz
,soalsoisL±f.
Proof:ByusingofEq.[4.104],forEq.[4.107]sayssoL±fisaneigenfunctionofL2,withthesameeigenvalue
.
andEq.[4.106]sayssoL±fisaneigenfunctionofLzwiththenew
eigenvalue
ħ.QED
L+iscalledthe“raising”operatorbecauseitincreasestheeigenvalueofLzbyħ.Liscalledthe“lowering”operatorbecauseitlowerstheeigenvaluebyħ.Foragivenvalueof,then,weobtaina“ladder”ofstates,witheach“rung”separatedfromitsneighborsbyoneunitofħintheeigenvalueof
Lz
(seeFigure4.6).
Toascendtheladderweapplytheraisingoperator,andtodescend,theloweringoperator.
Butthisprocesscannotgoonforever:Eventuallywe’regoingtoreachastateforwhichthez-componentexceedsthetotal,andthatcannotbe(seeProblem4.18).
Sotheremustexista“toprung”,ft
,suchthat
LetħlbetheeigenvalueofLz
atthistoprungNowor,puttingittheotherwayaround,Itfollowsthat
ThistellsustheeigenvalueofL2intermsofthemaximum
eigenvalueofLz.
Meanwhile,thereisalso(forthesamereason)abottomrung,fb
,suchthatUsingEquation4.112,wehaveComparingEqs.[4.113]and[4.116],weseethat
EvidentlytheeigenvaluesofLzaremħ
,wheremgoesfromlto+lin
Nintegersteps.Inparticular,itfollowsthatl=
l+N,andhence
Youmightreasonablyguessthatthehalf-integersolutionsarespurious,butitturnsoutthattheyareofprofoundimportance,asweshallseeinthefollowingsections.solmustbe
an
integeror
a
half-integer!
Now,theeigenfunctionsarecharacterizedbythenumberslandm:whereForagivenvalueofl,thereare2l+1differentvaluesofm(i.e.,2l+1“rungs”onthe“ladder”).
FirstofallweneedtorewriteLx,Ly,andLzinsphericalcoordinates.Nowandthegradient,insphericalcoordinates,isButasshownbyFig.4.1:andhenceThusEvidently,Weshallalsoneedtheraisingandloweringoperators:Wearenowinapositiontodeterminetheeigenfunction
—flm(,).Assumeit’saneigenfunctionofLz
,witheigenvalue
ħm:
Hereg()isaconstantofintegration,asfarasisconcerned,butitcanstilldependon.
Adifferentialequarionforg()canbewritten(seethetextbook)inamorefamiliarform(seeSection4.1.2):
whichispreciselytheequationforthe
-dependentpart,(),ofYlm(,)(compareEq.[4.25]).Meanwhile,the-dependentpartoffisidenticalto()(Eq.[4.22]).
Ontheotherhand,fisalsoaneigenfunctionofL2,witheigenvalue
ħ2l(l+1):Conclusion:The
sphericalharmonics
arepreciselythe
(normalized)
eigenfunctionsofL2
and
Lz
.
WhenwesolvedtheSchrödingerequationbyseparationofvariables,inSection4.1,wewereinadvertantlyconstructingsimultaneous
eigenfunctionsofthethree
commutingoperators
H,L2,andLz
:Homework:
Problem4.19,
Problem4.22.
Inclassicalmechanics,arigidobjectadmitstwokindsofangularmomentum:orbital(L=rp),associatedwiththemotionofthecenterofmass,andspin(S=I),associatedwithmotionaboutthecenterofmass.
Forexample,theearthhas
orbitalangularmomentumattributabletoitsannualrevolutionaroundthesun,and
spinangularmomentumcomingfromitsdailyrotationaboutthenorth-southaxis.Inquantummechanics,however,andherethedistinctionisabsolutelyfundamental.
Forexample,inthecaseofhydrogen:
orbitalangularmomentum
associatedwiththemotionoftheelectronaroundthenucleus(anddescribedbythesphericalharmonicsfunctions).
Theelectronisastructurelesspointparticle,anditsspinangularmomentumcannotbedecomposedintoorbitalangularmomentaofconstituentparts.
Sufficeittosaythatelementaryparticlescarryintrinsic
angularmomentum(S)inadditiontotheir“extrinsic”angularmomentum(L)!
Thealgebraictheoryofspinisacarboncopyofthetheoryoforbitalangularmomentum.
Beginningwiththefundamentalcommutationrelations:
Itfollows(asbefore)thattheeigenvectorsofS2andSzsatisfywhereS
Sx
iSy.
Butthistimetheeigenvectorsarenot
sphericalharmonics(they’renotfunctionsofandatall).Thereisnoapriorireasontoexcludethehalf-integervaluesofsandm:
Itsohappensthateveryelementaryparticlehasaspecific
andimmutablevalueofs,whichwecallthespinofthatparticularspecies:pimesons()havespins=0electrons(e)havespins=l/2photons()havespins=ldeltashavespins=3/2gravitons(引力子)havespins=2andsoon.
Bycontrast,theorbitalangularmomentum
quantumnumber
lcantakeonany(integer)valueyouplease,andwillchangefromonetoanotherwhenthesystemisperturbed.
Butspinangularmomentum
quantumnumber
s
isfixed,foranygivenparticle,andthismakesthetheoryofspincomparativelysimple.
Themostimportantcaseiss=1/2,forthisisthespinoftheparticlesthatmakeupordinarymatter(protons,neutrons,andelectrons),aswellasallquarksandallleptons.
Moreover,onceyouunderstandspinl/2,itisasimplemattertoworkouttheformalismforanyhigherspin.Therearejust
two
eigenstates:
Usingtheseasbasisvectors,thegeneralstateofaspin-l/2particlecanbeexpressedasatwo-elementcolumnmatrix(orspinor):
Meanwhile,thespinoperators2×2matrices,whichwecanworkoutbynotingtheireffecton+and:
Eq.[4.135]saysandEq.[4.136]givesNow,S
Sx
iSy,soanditfollowsthat
ThuswhileIt'salittletidiertodivideoffthefactorofħ/2:
ThesearethefamousPaulispinmatrices.NoticethatSx
,
Sy
,
Sz
,andS2
areallHermitian(astheyshouldbe,sincetheyrepresentobservables).
Ontheotherhand,S+
andSare
not
Hermitianevidentlytheyarenotobservable.TheeigenspinorsofSzare(ofcourse)
IfyoumeasureSzonaparticleinthegeneralstate(Eq.[4.139]),youcouldget+ħ/2,withprobability|a|2,orħ/2,withprobability|b|2.
Sincethesearetheonlypossibilities,
Butwhatifyouchosetomeasure
Sx?Whatarethepossibleresults,andwhataretheirrespectiveprobabilities?Accordingtothegeneralizedstatisticalinterpretation,weneedtoknowtheeigenvaluesandeigenspinorsof
Sx.ThecharacteristicequationofSxisNotsurprisingly,thepossiblevaluesfor
Sxarethesameasthosefor
Sz.
Theeigenspinorsareobtainedintheusualway:so,
=
.
Evidentlythe(normalized)eigenspinors
ofSx
areAstheeigenvectorsofaHermitianmatrix,theyspanthespace:thegenericspinor
canbeexpressedasalinearcombinationofthem:Ifyoumeasure
Sxinthestate
:
theprobabilityofgetting+ħ/2is(1/2)|a+b|2,and
theprobabilityofgettingħ/2is(1/2)|ab|2.Example.Supposeaspinl/2particleisinthestateEvidentlytheexpectationvalueofSxis
whichwecouldalsohaveobtainedmoredirectly:Homework:
Problem4.27,Problem4.30.
Aspinningchargedparticleconstitutesamagneticdipole.
Itsmagneticdipolemoment
isproportionaltoitsspinangularmomentum
S:
theproportionalityconstantiscalledthegyromagneticratio(旋磁比).
WhenamagneticdipoleisplacedinamagneticfieldB,itexperiencesatorque(扭转力/转矩),B,whichtendstolineitupparalleltothefield(justlikeacompassneedle).
Theenergyassociatedwiththistorqueis
sotheHamiltonianofaspinningchargedparticle,atrestinamagneticfield
B,becomes
whereSistheappropriatespinmatrix(Eq.[4.147],inthecaseofspin1/2).Example:
Larmorprecession(进动/旋进).
Imagineaparticleofspin1/2atrestinauniformmagneticfield,whichpointsinthez-direction:TheHamiltonian
matrixisTheeigenstatesofHarethesameasthoseofSzEvidently,theenergyislowestwhenthedipolemomentisparalleltothefield一justasitwouldbeclassically.SincetheHamiltonianistimeindependent,thegeneralsolutiontothetime-dependentSchrodingerequation,canbeexpressedintermsofthestationarystates:Theconstantsaandbaredeterminedbytheinitialconditions,say
where|a|2+|b|2=1.
Withnoessentiallossofgenerality,we’llwritewherefixedanglewhosephysicalsignificancewillappearinamoment.
ThusTogetafeelforwhatishappeninghere,let’scalculatetheexpectationvalueofthespinSasafunctionoftime:Similarity,EvidentlySistitledataconstantangletothez-axis,andprecessesaboutthefieldattheLarmorfrequency
justasitwouldclassically(seeFigure4.7).Example:theStern-Gerlachexperiment.
Inaninhomogeneous
magneticfield,thereisnotonlyatorque,butalsoaforce,onamagneticdipole:Thisforcecanbeusedtoseparateoutparticleswithaparticularspinorientation(方向).asfollows.
Imagineabeamofrelativelyheavyneutral(中性的)atoms,travelinginthey-direction,whichpassesthrougharegionofinhomogeneousmagneticfield(Figure4.8)Forexample,whereB0
isastronguniformfieldandtheconstantdescribesasmalldeviationfromhomogeneity.
TheforceontheseatomsisButbecauseoftheLarmorprecessionaboutB0,Sxoscillatesrapidly,andaveragestozero;thenet
forceisinthez-direction:andthebeamisdeflectedupordown,inproportiontothez-componentofthespinangularmomentum.Classicallywe’dexpectasmear,butinfactthebeamsplitsinto2s+1individualbeams,beautifullydemons
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司培训小组展示
- 珍爱生命健康成长小班安全教育课程大纲
- 职业精神与护理注意业务
- 《数据库原理及MySQL应用(微课版)》课件 第11章视图
- 中国担当网课课件
- 校园网贷培训课件
- 团员大会流程
- 加强教师教学创新提升课堂活力
- 幼师卫生保健知识培训学习
- 见证员考试题及答案
- 2024年山东普通高中学业水平等级考试化学(原卷版)
- 接警员试题题库
- 湖南省岳阳市2024年八年级下学期期末物理试卷附答案
- DZ∕T 0284-2015 地质灾害排查规范(正式版)
- 《风电功率预测功能规范》
- 关于读后续写的可行操作课件-高三英语一轮复习
- 港口企业财务风险分析报告
- 2023年贵州黔西南州专项招聘国企业工作人员21人考前自测高频难、易考点模拟试题(共500题)含答案详解
- 中医护理实训报告总结
- 动画制作与电影特效课件
- 监理抽检表 - 08桥梁工程
评论
0/150
提交评论