2023届江苏省南京市高淳区数学八下期末质量检测模拟试题含解析_第1页
2023届江苏省南京市高淳区数学八下期末质量检测模拟试题含解析_第2页
2023届江苏省南京市高淳区数学八下期末质量检测模拟试题含解析_第3页
2023届江苏省南京市高淳区数学八下期末质量检测模拟试题含解析_第4页
2023届江苏省南京市高淳区数学八下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F,若DF=3,则AC的长为()A. B.3 C.6 D.92.已知二次函数(为常数)的图象与轴的一个交点为,则关于的一元二次方程的两实数根是()A., B., C., D.,3.如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值范围表示在数轴上为(

)A.

B.C.

D.4.用反证法证明“在中,,则是锐角”,应先假设()A.在中,一定是直角 B.在中,是直角或钝角C.在中,是钝角 D.在中,可能是锐角5.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.6.下面几种说法:①对角线互相垂直的四边形是菱形;②一组对边平行,一组邻边相等的四边形是菱形;③对角线相等的平行四边形是矩形;④对角线互相垂直平分的四边形是菱形,那么准确的说法是()A.①②③ B.②③ C.③④ D.②④7.若Rt△ABC中两条边的长分别为a=3,b=4,则第三边c的长为()A.5 B. C.或 D.5或8.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角互补9.数据2,3,3,5,6,10,13的中位数为()A.5 B.4 C.3 D.610.一元二次方程x(x+3)=0的根为()A.0 B.3 C.0或﹣3 D.0或311.下列二次根式中,能与合并的是()A. B. C. D.12.如果把分式中的和都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍C.缩小6倍 D.不变二、填空题(每题4分,共24分)13.已知,,则__________.14.直线y=3x向下平移2个单位后得到的直线解析式为______.15.将直线向上平移个单位后,可得到直线_______.16.因式分解:_________17.若分式的值为0,则__.18.如图,数轴上点O对应的数是0,点A对应的数是3,AB⊥OA,垂足为A,且AB=2,以原点O为圆心,以OB为半径画弧,弧与数轴的交点为点C,则点C表示的数为_____.三、解答题(共78分)19.(8分)在△ABC中,AH⊥BC于H,D、E、F分别是BC、CA、AB的中点.求证:DE=HF.20.(8分)矩形不一定具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.是轴对称图形21.(8分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四边形ABCD中,____________.求证:四边形ABCD是平行四边形.22.(10分)如图,已知四边形ABCD是平行四边形,小慧同学利用直尺和规进行了如下操作:①连接AC,分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于点P、Q;②作直线PQ,分别交BC、AC、AD于点E、O、F,连接AE、CF.根据操作结果,解答下列问题:(1)线段AF与CF的数量关系是.(2)若∠BAD=120°,AE平分∠BAD,AB=8,求四边形AECF的面积.23.(10分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)24.(10分)如图,折叠长方形ABCD的一边AD,使点D落在BC上的点F处,已知AB=8,BC=10,求EC.25.(12分)如图,已知各顶点的坐标分别为,,.(1)画出以点B为旋转中心,按顺时针方向旋转后得到的;(2)将先向右平移5个单位长度,再向上平移3个单位长度,得到.①在图中画出,并写出点A的对应点的坐标;②如果将看成是由经过一次平移得到的,请指出这一平移的平移方向和平移距离.26.如图,矩形OBCD位于直角坐标系中,点B(,0),点D(0,m)在y轴正半轴上,点A(0,1),BE⊥AB,交DC的延长线于点E,以AB,BE为边作▱ABEF,连结AE.(1)当m=时,求证:四边形ABEF是正方形.(2)记四边形ABEF的面积为S,求S关于m的函数关系式.(3)若AE的中点G恰好落在矩形OBCD的边上,直接写出此时点F的坐标.

参考答案一、选择题(每题4分,共48分)1、C【解析】

首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠1,根据角平分线的定义推知∠1=∠1,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.即可得出结论.【详解】解:如图,∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠1.又∵AF平分∠CAB,∴∠1=∠1,∴∠1=∠2,∴AD=DF=1,∴AC=2AD=2.故选C.【点睛】本题考查了三角形中位线定理,等腰三角形的判定.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.2、B【解析】

先求出二次函数图象的对称轴,然后利用二次函数图象的对称性求出图象与x轴的另一个交点坐标,最后根据二次函数与x轴的交点的横坐标与一元二次方程的根的关系即可得出结论.【详解】解:二次函数图象的对称轴为直线x=∵图象与轴的一个交点为,∴图象与x轴的另一个交点坐标为(2,0)∴关于的一元二次方程的两实数根是,故选B【点睛】此题考查的是求二次函数图象与x轴的交点坐标和求一元二次方程的根,掌握二次函数图象的对称性和二次函数与x轴的交点的横坐标与一元二次方程的根的关系是解决此题的关键.3、C【解析】根据天平知2<A<3,然后观察数轴,只有C符合题意,故选C4、B【解析】

假设命题的结论不成立或假设命题的结论的反面成立,然后推出矛盾,说明假设错误,结论成立.【详解】解:用反证法证明命题“在中,,则是锐角”时,应先假设在中,是直角或钝角.故选:B.【点睛】本题考查反证法,记住反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5、A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.6、C【解析】

根据矩形和菱形的判定定理进行判断.【详解】解:对角线互相垂直平分的四边形是菱形,①错误,④正确;两组对边平行,一组邻边相等的四边形是菱形,②错误;对角线相等的平行四边形是矩形,③正确;∴正确的是③④,故选:C.【点睛】本题考查了矩形和菱形的判定,熟练掌握相关判定定理是解题的关键.7、D【解析】

分情况讨论:①当a,b为直角边时,求得斜边c的长度;②当a为直角边,b为斜边时,求得另外一条直角边c的长度.【详解】解:分两种情况:

①当a,b为直角边时,第三边c==5;

②当a为直角边,b为斜边时,第三边c=.

故选D.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中讨论边长为4的边是直角边还是斜边是解题的关键.8、A【解析】

菱形的对角线互相垂直平分,矩形的对角线相等互相平分.则菱形具有而矩形不一定具有的性质是:对角线互相垂直故选A9、A【解析】

根据中位数的定义:中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,即可得解.【详解】根据中位数的定义,得5为其中位数,故答案为A.【点睛】此题主要考查中位数的定义,熟练掌握,即可解题.10、C【解析】

方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程x(x+3)=0,可得x=0或x+3=0,解得:x1=0,x2=−3.故选C.【点睛】此题考查解一元二次方程-因式分解法,解题关键在于掌握其定义.11、B【解析】

先把各个二次根式化简,根据同类二次根式的概念判断即可.【详解】A.不能与合并;B.,能与合并;C.,不能与合并;D.,不能与合并.故选B.【点睛】本题考查的是同类二次根式,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.12、D【解析】

将x,y用3x,3y代入化简,与原式比较即可.【详解】解:将x,y用3x,3y代入得=,故值不变,答案选D.【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.二、填空题(每题4分,共24分)13、1【解析】

把x与y代入计算即可求出xy的值【详解】解:当,时,∴;故答案为:1.【点睛】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.14、y=3x-1【解析】

直接利用一次函数图象的平移规律“上加下减”即可得出答案.【详解】直线y=3x沿y轴向下平移1个单位,则平移后直线解析式为:y=3x-1,故答案为:y=3x-1.【点睛】本题主要考查一次函数的平移,掌握平移规律是解题的关键.15、【解析】

根据“上加下减”原则进行解答即可.【详解】由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即故答案为:【点睛】本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.16、x(x-9)【解析】分析:直接提取公因式x,进而分解因式即可.详解:x2﹣9x=x(x﹣9).故答案为:x(x﹣9).点睛:本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.17、2【解析】

根据分式的值为零的条件即可求出答案.【详解】解:由题意可知:,解得:,故答案为:2;【点睛】本题考查分式的值为零,解题的关键是正确理解分式的值为零的条件,本题属于基础题型.18、【解析】

首先利用勾股定理计算出OB的长,然后再由题意可得BO=CO,进而可得CO的长.【详解】∵数轴上点A对应的数为3,∴AO=3,∵AB⊥OA于A,且AB=2,∴BO===,∵以原点O为圆心,OB为半径画弧,交数轴于点C,∴OC的长为,故答案为:.【点睛】此题主要考查了实数与数轴,勾股定理,关键是利用勾股定理计算出BO的长.三、解答题(共78分)19、证明见解析.【解析】分析:根据题意知EH是直角△ABH斜边上的中线,DE是△ABC的中位线,所以由相关的定理进行证明.详解:∵D、E分别是BC、CA的中点,∴DE=AB.又∵点F是AB的中点,AH⊥BC,∴FH=AB,∴DE=HF.点睛:本题考查了三角形中位线定理、直角三角形斜边上的中线.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.20、B【解析】

根据矩形的性质解答即可.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、C、D正确,故选:B.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;

⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.21、已知:①③(或①④或②④或③④),证明见解析.【解析】试题分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.其中解法一是证明两组对角相等的四边形是平行四边形;解法二是证明两组对边平行的四边形是平行四边形;解法三是证明一组对边平行且相等的四边形是平行四边形;解法四是证明两组对角相等的四边形是平行四边形.试题解析:已知:①③,①④,②④,③④均可,其余均不可以.解法一:已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.解法二:已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AD∥BC,∴四边形ABCD是平行四边形;解法三:已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形;解法四:已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,∴∠A+∠D=180°,又∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形.考点:平行四边形的判定.22、(1)FA=FC;(2)【解析】

(1)根据基本作图和线段垂直平分线的性质进行判断;(2))由AE平分∠BAD得到∠BAE=∠DAE=∠BAD=60°,利用平行四边形的性质得AD∥BC,则∠AEB=∠DAE=60°,所以△ABE为等边三角形,则AE=AB=8,∠B=60°,于是可计算出AC=AB=8,再证明△AEF为等边三角形得到EF=8,然后根据三角形面积公式利用四边形AECF的面积=EF×AC进行计算.【详解】解:(1)由作法得EF垂直平分AC,所以FA=FC.故答案为FA=FC;(2)∵AE平分∠BAD,∴∠BAE=∠DAE=∠BAD=60°,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠AEB=∠DAE=60°,∴△ABE为等边三角形,∴AE=AB=8,∠B=60°,∵EA=EC,∴∠EAC=∠ECA=∠AEB=30°,∴AC=AB=8,∵∠CAD=60°-30°=30°,即OA平分∠EAF,∴AF=AE=8,∴△AEF为等边三角形,∴EF=8,∴四边形AECF的面积=.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.23、(1)众数是7,中位数是7;(2)乙,理由见解析【解析】

(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知=7,=7,=6.3,方差越小,成绩越稳定.根据方差的意义不难判断.【详解】(1)甲运动员测试成绩中7出现最多,故甲的众数为7;甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,∴甲的中位数为=7,∴甲测试成绩的众数和中位数都是7分;(2)=×(7+6+8+7+7+5+8+7+8+7)=7,=×(6+6+7+7+7+7+7+7+8+8)=7,=×(5×2+6×4+7×3+8×1)=6.3,∵=,S甲2>S乙2,∴选乙运动员更合适.【点睛】本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.24、EC=1【解析】

根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【详解】∵四边形ABCD为矩形,

∴DC=AB=8cm;∠B=∠C=90°;

由题意得:AF=AD=10,

设EF=DE=xcm,EC=8-x;

由勾股定理得:BF2=102-82,

∴BF=6,

∴CF=10-6=4;

在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,

解得:x=5,

EC=8-5=1.

故答案为:1【点睛】此题主要考查了翻折变换的性质、矩形的性质、勾股定理;运用勾股定理得出方程是解决问题的关键解题的关键.25、(1)详见解析;(2)①图详见解析,A2(2,-1);②由A到A2的方向,平移的距离是个单位长度.【解析】

(1)根据旋转的性质即可作图;(2)①根据平移的性质画出图形即可;②连接AA2,根据勾股定理求出AA2的长,进而可得出结论.【详解】(1)如图所示,即为所求;(2)①如图所示,即为所求,A2(2,-1);②连接AA2,由勾股定理求得AA2=,∴如果将看成是由经过一次平移得到的,那么这一平移的平移方向是由A到A2的方向,平移的距离是个单位长度.【点睛】本题考查的是作图-旋转变换及平移变换,熟知图形平移不变性的性质是解答第(2)问的关键.26、(1)证明见解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论