上海市闵行区21学校2023年八年级数学第二学期期末监测模拟试题含解析_第1页
上海市闵行区21学校2023年八年级数学第二学期期末监测模拟试题含解析_第2页
上海市闵行区21学校2023年八年级数学第二学期期末监测模拟试题含解析_第3页
上海市闵行区21学校2023年八年级数学第二学期期末监测模拟试题含解析_第4页
上海市闵行区21学校2023年八年级数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.生物刘老师对本班50名学生的血型进行了统计,列出如下统计表,则本班O型血的有()A.17人 B.15人 C.13人 D.5人2.已知点,,,在直线上,且,下列选项正确的是A. B. C. D.无法确定3.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数 B.标准差 C.中位数 D.众数4.为迎接“劳动周”的到来,某校将九(1)班50名学生本周的课后劳动时间比上周都延长了10分钟,则该班学生本周劳动时间的下列数据与上周比较不发生变化的是()A.平均数B.中位数C.众数D.方差5.要使分式有意义,则x的取值满足的条件是()A. B. C. D.6.下列不是同类二次根式的是()A. B. C. D.7.一元二次方程的根是()A. B. C., D.无实数根8.若a>b,则下列式子正确的是()A.a+2<b+2 B.﹣2a>﹣2b C.a﹣2>b﹣2 D.a9.下列图形中,可以抽象为中心对称图形的是()A. B.C. D.10.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°-α B.90°+α C. D.360°-α二、填空题(每小题3分,共24分)11.一组数据5、7、7、x中位数与平均数相等,则x的值为________.12.下列4种图案中,既是轴对称图形,又是中心对称图形的有__________个.13.用换元法解方程3x22x+1-2x+1x2=1时,如果设x22x+1=14.如图,跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.8m;当它的一端B地时,另一端A离地面的高度AC为____m.15.直线y=x+2与x轴的交点坐标为___________.16.小明的生日是6月19日,他用6、1、9这三个数字设置了自己旅行箱三位数字的密码,但是他忘记了数字的顺序,那么他能一次打开旅行箱的概率是__________.17.如图,已知矩形的长和宽分别为4和3,、,,依次是矩形各边的中点,则四边形的周长等于______.18.已知,是一元二次方程的两个实数根,则的值是______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).(1)只用直尺(没有刻度)和圆规按下列要求作图.(要求:保留作图痕迹,不必写出作法)Ⅰ)AC⊥y轴,垂足为C;Ⅱ)连结AO,AB,设边AB,CO交点E.(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.20.(6分)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(结果保留根号)21.(6分)在▱ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F(1)如图①,求证:OE=OF;(2)如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.22.(8分)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“快乐分式”.如:,则是“快乐分式”.(1)下列式子中,属于“快乐分式”的是(填序号);①,②,③,④.(2)将“快乐分式”化成一个整式与一个分子为常数的分式的和的形式为:=.(3)应用:先化简,并求x取什么整数时,该式的值为整数.23.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中A(1,1)、B(4,4)、C(5,1).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△A2B2C2,A、B、C的对应点分别是A2、B2、C2;(3)连CB2,直接写出点B2、C2的坐标B2:、C2:.24.(8分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:.当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:.假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:.解决问题:(1)下列分式中属于真分式的是()A.B.C.D.(2)将假分式分别化为带分式;(3)若假分式的值为整数,请直接写出所有符合条件的整数x的值.25.(10分)如图,已知点A、C在双曲线上,点B、D在双曲线上,AD//BC//y轴.(I)当m=6,n=-3,AD=3时,求此时点A的坐标;(II)若点A、C关于原点O对称,试判断四边形ABCD的形状,并说明理由;(III)若AD=3,BC=4,梯形ABCD的面积为,求mn的最小值.26.(10分)解方程:(1)(2)

参考答案一、选择题(每小题3分,共30分)1、D【解析】

频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数.【详解】解:本班O型血的有:50×0.1=5(人),故选:D.【点睛】本题考查了频率与频数,正确理解频率频数的意义是解题的关键.2、B【解析】

先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可作出判断.【详解】解:直线中,随的增大而增大,,.故选:.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.3、B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为xi,则样本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.4、D【解析】【分析】根据平均数,中位数,众数,方差的定义或计算公式可以分析出结果.【详解】由已知可得,平均数增加了;中位数也增加了;众数也增加了;方差不变.故选:D【点睛】本题考核知识点:数据的代表.解题关键点:理解相关定义.5、B【解析】

根据分式有意义的条件是分母不等于零可得x+2≠0;解不等式可得结果,从而得出正确选项.【详解】由分式有意义的条件可得x+2≠0,解得x≠-2.故答案选B.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.6、A【解析】

根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【详解】解:A、与不是同类二次根式;B、=与是同类二次根式;C、=2与是同类二次根式;D、=3与是同类二次根式;故选:A.【点睛】本题考查的是同类二次根式的定义,掌握二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式是解题的关键.7、C【解析】

利用因式分解法即可将原方程变为x(x-1)=0,即可得x=0或x-1=0,则求得原方程的根.【详解】解:∵x1=1x,∴x1-1x=0,∴x(x-1)=0,∴x=0或x-1=0,∴一元二次方程x1=1x的根x1=0,x1=1.故选C.【点睛】此题考查了因式分解法解一元二次方程.熟练掌握一元二次方程的解法是解题关键.8、C【解析】

依据不等式的基本性质进行判断,即可得出结论.【详解】解:若a>b,则a+2>b+2,故A选项错误;若a>b,则-2a<-2b,故B选项错误;若a>b,则a-2>b-2,故C选项正确;若a>b,则12a>1故选:C.【点睛】本题主要考查了不等式的基本性质,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.9、B【解析】

根据中心对称图形的概念求解.【详解】A.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B.是中心对称图形,故此选项正确;C.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误。故选:B.【点睛】此题考查中心对称图形,难度不大.10、C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.二、填空题(每小题3分,共24分)11、5或2【解析】试题分析:根据平均数与中位数的定义就可以解决.中位数可能是7或1.解:当x≥7时,中位数与平均数相等,则得到:(7+7+5+x)=7,解得x=2;当x≤5时:(7+7+5+x)=1,解得:x=5;当5<x<7时:(7+7+x+5)÷4=(x+7)÷2,解得x=5,舍去.所以x的值为5或2.故填5或2.考点:中位数;算术平均数.12、1.【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,也是中心对称图形。故正确B.不是轴对称图形,也不是中心对称图形。故错误;C.不是轴对称图形,不是中心对称图形。故错误;D.是轴对称图形,不是中心对称图形。故错误。故答案为:1【点睛】此题考查中心对称图形,轴对称图形,难度不大13、3y2-y-1=0【解析】

将分式方程中3x22x+1换成3y,【详解】解:根据题意,得:3y-1y去分母,得:3y2-1=y,整理,得:3y2-y-1=0.故答案为:3y2-y-1=0.【点睛】本题考查了用换元法解分式方程.14、1.6【解析】

确定出OD是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.【详解】解:∵跷跷板AB的支柱OD经过它的中点O,AC、OD都与地面垂直,∴OD是△ABC的中位线,∴AC=2OD=2×0.8=1.6米.故答案为1.6米.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,是基础题,熟记定理是解题的关键.15、(-2,0)【解析】

令纵坐标为0代入解析式中即可.【详解】当y=0时,0=x+2,解得:x=-2,∴直线y=x+2与x轴的交点坐标为(-2,0).点睛:本题主要考查了一次函数与坐标轴的交点问题,关键在于理解在x轴上的点的纵坐标为0.16、【解析】

首先利用列举法可得:等可能的结果有:619,691,169,196,961,916;然后直接利用概率公式求解即可求得答案.【详解】解:∵等可能的结果有:619,691,169,196,961,916;∴他能一次打开旅行箱的概率是:,故答案为:.【点睛】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17、1【解析】

直接利用矩形的性质结合勾股定理得出EF,FG,EH,HG的长即可得出答案.【详解】∵矩形ABCD的长和宽分别为4和3,E、F、G、H依次是矩形ABCD各边的中点,∴AE=BE=CG=DG=1.5,AH=DH=BF=FC=2,∴EH=EF=HG=GF=,∴四边形EFGH的周长等于4×2.5=1故答案为1.【点睛】此题主要考查了中点四边形以及勾股定理,正确应用勾股定理是解题关键.18、1【解析】

根据一元二次方程的根与系数的关系即可解答.【详解】解:根据一元二次方程的根与系数关系可得:,所以可得故答案为1.【点睛】本题主要考查一元二次方程的根与系数关系,这是一元二次方程的重点知识,必须熟练掌握.三、解答题(共66分)19、(1)见解析;(2)△AOE的面积与△BOE的面积相等.【解析】试题分析:(1)过点A作AC⊥y轴于C,连接AB交y轴于E,如图,(2)证明△ACE≌△BOE,则AE=BE,于是根据三角形面积公式可判断△AOE的面积与△BOE的面积相等.解:(1)如图,(2)∵A(3,4),B(﹣3,0),∴AC=OB=3,在△ACE和△BOE中,,∴△ACE≌△BOE,∴AE=BE,∴△AOE的面积与△BOE的面积相等.20、直线L上距离D点400米的C处开挖.【解析】

首先证明△BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可.【详解】∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴△BCD是等腰直角三角形,CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=400(米),答:直线L上距离D点400米的C处开挖.【点睛】此题考查等腰直角三角形的判定及性质,利用勾股定理求直角三角形的边长,邻补角的性质求角度.21、(1)证明见解析;(2)证明见解析.【解析】

(1)由四边形ABCD是平行四边形,得到OB=OD,AB∥CD,根据全等三角形的性质即可得到结论;(2)根据对角线互相平分的四边形是平行四边形先判定四边形BEDF是平行四边形,继而根据对角线互相垂直的平行四边形是菱形即可得结论.【详解】(1)∵四边形ABCD是平行四边形,∴OB=OD,AB∥CD,∴∠EBO=∠FDO,在△OBE与△ODF中,,∴△OBE≌△ODF(ASA),∴OE=OF;(2)∵OB=OD,OE=OF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形.【点睛】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质.注意掌握数形结合思想的应用.22、(1)①②③;(2);(3),x=-3【解析】

(1)根据快乐分式的定义分析即可;(2)根据快乐分式的定义变形即可;(3)先化简,再根据快乐分式的定义变形,然后再根据x的值和分式的值为整数讨论即可.【详解】解:(1)①,是快乐分式,②,是快乐分式,③,是快乐分式,④不是分式,故不是快乐分式.故答案为:①②③;(2)原式==;(3)原式=====∵当或时,分式的值为整数,∴x的值可以是0或或1或,又∵分式有意义时,x的值不能为0、1、,∴【点睛】本题考查了新定义运算,以及分式的混合运算.熟练掌握运算法则及快乐分式的定义是解本题的关键.23、(1)见解析;(2)见解析;(3)(4,﹣2),(1,﹣3).【解析】

(1)分别画出A、B、C的对应点A1,B1,C1即可(2)分别画出A、B、C的对应点A2,B2,C2即可(3)根据B2,C2的位置写出坐标即可;【详解】解:(1)的△A1B1C1如图所示.(2)的△A2B2C2如图所示.(3)B2(4,﹣2),C2(1,﹣3),故答案为(4,﹣2),(1,﹣3).【点睛】此题考查作图-旋转变换和平移变换,掌握作图法则是解题关键24、(1)C;(2),;(3)x可能的整数值为0,-2,-4,-6.【解析】

(1)根据真分式的定义,即可选出正确答案;(2)利用题中的方法把分子分别变形为和,然后写成带分式即可;(3)先把分式化为带分式,然后利用有理数的整除性求解.【详解】(1)A.分子的次数为2,分母的次数为1,所以错误;B.分子的次数为1,分母的次数为1,故错误;C.分子的次数为0,分母的次数为1,故正确;D.分子的次数为2,分母的次数为2,故错误;所以选C;(2),,(3)∵该分式的值为整数,∴的值为整数,所以x+3可取得整数值为±3,±1,x可能的整数值为0,-2,-4,-6.【点睛】本题主要考查分式的性质,要结合分式的基本性质依照题目中的案例,会对分式进行适当的变形.(1)根据真分式的定义判断即可;(2)可借助平方差公式,先给x2减1再加1,将它凑成平方差公式x2-1=(x+1)(x-1);(3)需将假分式等量变形成带分式,然后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论