生物脱氮脱硫原理_第1页
生物脱氮脱硫原理_第2页
生物脱氮脱硫原理_第3页
生物脱氮脱硫原理_第4页
生物脱氮脱硫原理_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

生物脱氮原理及6大参数高氨氮废水是我们经常会遇到的一种废水,想要将污水中的氨氮去除,除了要了解各种脱氮原理,还要从经济有效的角度来考虑选用哪种工艺,而生物脱氮技术恰恰符合以上条件,成为污水脱氮中最常见的工艺之一。今天我们就来聊一聊生物脱氮原理和主要控制参数。污水中的氮主要以氨氮和有机氮的形式存在,通常没有或只有少量亚硝酸盐和硝酸盐形式的氮。只有不到20%~40%的氮在传统的二级处理中被去除。污水生物处理脱氮主要是靠一些专性细菌实现氨形式的转化,经过氨化、硝化、反硝化过程,含氮有机化合物最终转化为无害的氮气,从污水中去除1、 工艺原理及过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物--亚硝酸盐菌和硝酸盐菌。这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。这两个反应过程都释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。反硝化过程是反硝化菌异化硝酸盐的过程,即由硝化菌产生的硝酸盐和亚硝酸盐在反硝化菌的作用下,被还原为氮气后从水中溢出的过程。反硝化过程也分为两步进行,第一步由硝酸盐转化为亚硝酸盐,第二步由亚硝酸盐转化为一氧化氮、氧化二氮和氮气。同时,反硝化菌利用含碳有机物和部分分硝酸盐转化为氨氮用于细胞合成,该碳源既可以是污水中的有机碳或细胞体内碳源,也可以外部投加。2、 生物脱氮的工艺控制消化过程(硝化菌)的影响因素温度:硝化反应的最适宜温度范围是30-35C。,温度不但影响硝化菌的比增长速率,而且影响硝化菌的活性。温度低于5C。,硝化细菌的生命活动几乎完全停止:在5—35C的范围内,硝化反应速率随温度的升高而加快;但达到30C后,蛋白质的变性会降低硝化菌的活性,硝化反应增加的幅度变小。对于同时去除有机物和进行硝化反应的系统,温度低于15C时硝化速率会迅速降低。低温对硝酸菌的抑制作用更为强烈,因此在12~14C。的系统中会出现亚硝酸盐的积累。溶解氧:溶解氧浓度为0.5-0.7mg/L是硝化菌可以忍受的极限,溶解氧低于2mg/L条件下,氮有可能被完全硝化,但需要较长的污泥停留时间,因此一般应维持混合掖的溶解氧浓度在2mg/L以上。对于同时去除有机物和进行硝化的工艺,硝化菌约占活性污泥的5%左右,且大部分处于生物絮体的内部。在这种情况下,溶解氧浓度的增加将会提高溶解氧对生物絮体的穿透力,从而提高硝化反应速率。因此,在低泥龄条件下,由于含碳有机物氧化速率的增加使耗氧速率增加,减少了溶解氧对生物絮体的穿透力,进而降低了硝化反应速率。相反,在长泥龄条件下,耗氧速率较低,即使溶解氧浓度不高,也可保证溶解氧对生物絮体的穿透作用,从而维持较高的硝化反应速率。因此当泥龄降低时,为维持较高的硝化速率,应该相应提高溶解氧浓度。pH值和碱度:硝化菌对pH值十分敏感,硝化反应的最佳pH值范围是7.2-8.0,pH值超出这个范围时,硝化反应速率会明显降低,低于6或高于9.6时,硝化反应将停止进行。另外,每硝化1g氨氮大约要消耗7.14gCaCO3碱度,因此,如果污水没有足够的碱度进行缓冲,硝化反应将导致pH值下降、反应速率减缓。因此,保证硝化反应的正常进行,往往需要投加必要的碱量以维持适宜的pH值。硝化菌经过一段时间的驯化后,硝化反应可以在较低的pH值条件下进行,但pH值突然降低也会引起硝化反应速度的骤降。有研究表明,要使硝化反应的pH值由7.0降低到6.0,大约需要驯化10d。有毒物质:过高的氨氮、重金属、有毒物质及某些有机物对硝化反应都有抑制作用。一般情况下,重金属和有毒物质主要抑制亚硝酸菌的生长,个别物质抑制硝酸菌的生长。有机物浓度高时,异养菌的数量会大大超过硝化菌,从而阻碍氨向硝化菌的转移,硝化菌能利用的溶解氧也因异养菌的利用而减少,硝化反应能顺利进行所要求的BOD5值一般应低于20mg/L。因此,在培养和驯化硝化菌时,一定要注意氨氮、重金属、有毒物质及有机物的浓度,不使其产生抑制作用。泥龄:为保证反应器中的存活并维持一定数量和性能的硝化菌,活性污泥在其中的停留时间SRT即泥龄必须大于硝化菌的最小世代周期,否则硝化菌的流失率大于其繁殖率。最终使其从系统中数量越来越少。一般来说,系统的泥龄应为硝化菌世代周期的两倍以上,-般不得小于3—5d,冬季水温低时要求泥龄更长,为保证一年四季都有充分的硝化反应,通常泥龄都大于10d。较长的泥龄可增强硝化反应的能力,并可减轻有毒物质刺激的抑制作用。碳氮比C/N:在活性污泥系统中,硝化菌一般只占微生物总量的5%左右,这是因为与异养菌相比,硝化菌的产率低。硝化菌是一类自养菌,有机物浓度不是其生长的限制因素,如果有机物浓度过高,会使生长速率较快的异氧菌迅速繁殖,争夺混合液中的溶解氧,从而使生长缓慢且好氧的硝化菌得不到优势,降低硝化速率。因此BOD5与TKN的比值即碳氮比C/N,是反映活性污泥系统中异养菌与硝化菌竞争底物和溶解氧能力的指标,C/N不同直接影响脱氮效果。一般认为,处理系统的BOD5负荷低于0.15BOD5/(MLVSS・d)时,硝化反应才能正常进行。(2)反硝化过程(反硝化菌)的影响因素温度:反硝化反应的最适宜温度范是35一45C。。温度对反硝化反应的影响与反硝化设备的类型(微生物悬浮生长型与附着生长型)及硝酸盐负荷有关。当温度从20C下降到达15C时,为达到相同的反硝化效果,生物转盘和活性污泥法的水力停留时间则分别要提高到原来的4.6倍和2.3倍。溶解氧:反硝化菌是兼性菌,既能进行有氧呼吸,也能进行无氧呼吸。当水中同时存在分子态氧和硝酸盐时,优先进行有氧呼吸,这样,反硝化菌会优先降解含碳有机物,从而抑制硝酸盐的还原。所以为了保址反硝化反应的顺利进行,必须保持严格的缺氧状态,保持氧化还原电位为-50—110mVo另外,反硝化菌从有氧呼吸转为无氧呼吸的关键是合成无氧呼吸的酶,而分子态氧的存在会抑制这类酶的合成及其活性。因此,为使反硝化反应正常进行,悬浮型活性污泥系统中的溶解氧应保持在0.2mg/L以下,由于生物膜对氧传递的阻力较大,即使合液中有一定量的DO,生物膜内层仍呈缺氧状态而继续进行反硝化,所以附着型生物处理系统可以容许较高的溶解氧浓度(一般低于1mg/L)。pH值:硝化反应的最佳pH值范围是6.5一7.5,不适宜的pH值会影响反硝化菌的生长速率和反硝化酶的活性。当pH值低于6.0或高于8.5时,反硝化反应将受到强烈抑制。反硝化反应会产生部分碱度,这有助于将pH值保持在所需要的范围内,并补充硝化过程中所消耗的一部分碱度。此外,pH值还影响反硝化的最终产物,pH值>7.3时最终产物是氮气,pH值<7.3时最终产物是N2O。碳源有机物质:反硝化反应需要提供足够的碳源,碳源物质不同,反硝化速率也将有区别。挥发性有机酸、甲醇、乙醇等是理想的反硝化反应碳源物质,因此,啤酒污水等含挥发性有机物质的污水可作为反硝化反应脱氮的碳源,而以城市污水或内源代谢物质作为反硝化反应碳源时的反硝化速率就要低得多。碳氮比C/N:理论上将1g硝酸盐氮转化为N2需要碳源物质BOD52.86g。因此,一般认为,当污水的BOD5/TKN值大于4-6时,可认为碳源充足,不需要另外投加碳源,否则,应当投加甲醇或其他易降解有机物作为碳源。6.有毒物质:镍浓度大于0.5mg/L,亚硝酸盐氮含量超过30mg/L或盐度高于0.63%时都会抑制反硝化作用。硫酸盐含量过高会导致反硫化的进行,进而影响反硝化的正常进行,钙和氨的浓度过高也会抑制反硝化作用。污水除磷原理及案例分析目前,水体富营养化日趋严重,主要是因为氮磷进入水体造成藻类和其他微生物异常增殖。从藻类对氮、磷的需求关系来看,磷的需求往往更为重要,生长增殖受磷的限制更为明显。当前,政府对污水排放标准中磷的含量的要求越来越严格。化学除磷和生物除磷是去除污水中磷的两种主要方法,今天我们就来聊一聊这两种工艺。化学除磷工艺原理化学除磷的基本原理是通过投加化学试剂形成不溶性的磷酸盐沉淀物,然后通过固液分离将磷从污水中除去。固液分离可单独进行,也可以与初沉污泥和二沉污泥的排放相结合。可用于化学除磷的金属盐有多种:铝盐(蔬酸铝、铝酸钠、钙盐和铁盐(三氯化铁、硫酸铁、硫酸亚铁和氧化亚铁)。化学法除磷,也可称混凝沉淀除磷技术,污水中的磷酸盐能和以h物质生成不溶性的沉淀物而被去除。化学法的特点是磷的去除率高,处理结果稳定,污泥在处理和处置过程中不会重新释放磷而造成二次污染,但污泥产量大。生物法除磷工艺原理生物法除磷的原理是某些细菌交替地处于厌氧与好氧条件下,在厌氧条件下,细菌吸收低分子的有机物并以聚8-羟基丁酸(PHB)等形式在体内储存起来,同时将细胞原生质中聚合磷酸盐以正磷酸盐的方式释放出来,此时污水中磷的含量升高,BOD的含量降低。然后在好氧条件下,细菌将吸收的有机物(PHB)氧化分解,并提供能源,同时从污水中吸收大量的磷,以聚磷酸盐的形式储存起来,其吸收的量大于其释放的量,这时污水中的磷含量大大降低,通过把剩余污泥排出系统,同时将细菌摄入的磷排走,从而达到除磷的目的。其大致工艺流程见图。弗斯特利普除磷工艺弗斯特利普(Phostrip)除磷工艺,又名侧流工艺,由Levin于1965年首先提出,是一种将生物除磷与化学除磷方法相结合的工艺。该工艺采用石灰为化学除磷的沉淀剂,剩余污泥中含有大量的Ca3(P04)2。侧流除磷工艺的厌氧段不在处理污水的水流方向上,而是在回流污泥的侧流上,具体方法是将部分含磷回流污泥分流到厌氧段释放磷,再用石灰沉淀去除富磷上清液中的磷。与其他除磷工艺相比,Phostrip除磷工艺的最大优势是操作灵活、适应性强、能够保证出水很低的总磷浓度。例如,当原污水的VFA/TP比值较低时,由于有效厌氧释磷量和剩余泥产生量均不足,好氧除磷效率不高,这时候可以增大药剂的投加量,以保证出水达标排放,而当生物除磷率很高时,又可以及时地减少投药量,避免不必要的浪费。该工艺的特点:其石灰用量一般介于21~31.8[mgCa(OH>2/m3污水],是比较低的。剩余污泥中含磷量约为2.1%~7.1%,是比较低的,可以充作肥料。本工艺的SVI值低于100,污泥易于沉淀、浓缩和脱水、肥分高,丝状菌难于增殖,污泥不膨胀。但是,该工艺也有一些劣势:⑴Phostrip工艺的流程复杂,石灰储存和预备系统的问题也较多,维护、运行和管理的要求也较高,因而基建投资和运行费用均比较高。(2)沉淀池的底部可能形成缺氧环境而产生磷释放的现象,应当及时排放和回流含揉污泥。应用实例德国达姆斯塔特(Darmstadt)污水处理厂始建于1957年,到1988年经过多次的改扩建,根据当时德国的出水要求,出水水质能满足德国的排放标准。达姆斯塔特污水处理厂原有常规生物活性污泥处理工艺已不能满足新的除磷脱氮要求,所以该市于1988年将其卖给该州一公司(SuedhessischeCasundWasserAG)进行经营。该公司于1989年对处理方案进行了研究设计。方案定为:将原来的曝气池改扩建为硝化和同步反硝化脱N池,后续增加了PhosStrip工艺进行生物除磷,设计和建设周期为1992-1996。扩建后的污水处理厂处理效果见表1。除磷工艺的7大参数适量的磷对于促进水生植物及微生物的生长具有重要作用,对保持水环境的平衡也具有一定的作用,但过量磷等营养物质进入水体中,则会使水体产生富营养化,使水体中的浮游藻类大量繁殖,甚至是爆发性繁殖。因此,控制进入水体的磷含量,对于解决水体富营养化问题至关重要。今天我们就来聊一聊除磷工艺的主要控制参数。溶解氧首先心须在厌氧区控制严格的厌氧环境,这直接关系到聚磷菌的生长状况、释磷能力及利用有机基质的能力。厌氧区DO的存在,一方面会因DO将作为最终电子受体而抑制厌氧菌的发酵产酸作用,妨碍磷的释放;另一方而会快速耗尽有机基质,从而减少聚磷菌所需的VFA量,造成生物除磷效果降低。其次是必须在好氧区供给足够的溶解氧,以便聚磷菌有效地吸收污水中的磷。一般厌氧段的DO要严格控制在0.2mg/L以下,而好氧段的DO要控制在2mg/L以上。厌氧区硝态氮硝态氮包括硝酸盐和亚硝酸盐,硝态氮的存在会消耗有机基质而抑制聚磷菌对磷的释放,进而影响好氧条件下聚磷菌对磷的吸收。另外,硝态氮的存在会被部分聚磷菌利用而进行反硝化,从而影响聚磷菌的释磷和摄磷能力。温度温度对除磷的影响不如对生物脱氮过程的影响那么明显,因为在高温、中温和低温条件下,都有不同的具有生物除磷能力的聚磷菌在活动。但为保证发酵作用的完成和基质的吸收,在低温运行时,要求厌氧段的时间更长一些。一般来说,在5—30C。的范围内,都可以收到较好的除磷效果。pH值通常情况下,pH值在6-8的范围内时,磷的释放比较稳定°pH值低于6.5时,生物除磷的效果会大大下降。BOD5ft荷和有机物性质污水生物除磷工艺中,厌氧段有机基质的种类、含量及微生物所需营养物质与污水中含磷的比值是影响除磷效果的重要因素。不同的有机物为基质时,磷的厌氧释放和好氧摄取效果是不同的。分子量较小的易降解有机物(如挥发性脂肪酸类等)容易被聚磷菌利用,将其体内储存的多聚磷酸盐分解释放出磷,诱导磷释放的能力较强,而高分子难降解有机物诱导聚磷菌释磷能力就较差。厌氧阶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论