完整聚合物材料取向度_第1页
完整聚合物材料取向度_第2页
完整聚合物材料取向度_第3页
完整聚合物材料取向度_第4页
完整聚合物材料取向度_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章聚合物材料取向度(完整)第十章聚合物材料取向度§10.1引言聚合物材料在挤出、注射、压延、吹塑等加工过程中,以及在温度场、压力场、电(磁)场等的作用下,大分子链或链段,微晶必然要表现出不同程度的取向.聚合物材料取向后,在以共价键相连的分子链方向上,单位截面化学键数目明显增加,抗拉强度大大加强;在垂直分子链方向上,主要是分子链间较弱的VanderWaals力作用,强度可能降低,使材料具有各向异性。在与外力作用方向相同的方向上,聚合物材料具有较大的破坏强度和较高的伸长率,对材料的物理机械性能以及使用均有相当大影响,因此研究聚合物取向度及其过程是很有实际意义的。本章着重阐述用X射线衍射方法测定结晶聚合物材料的取向。取向是指样品在纺丝,拉伸,压延,注塑,挤出以及在电(磁)场等作用下分子链产生取向重排的现象.在取向态下,结晶聚合物材料分子链择优取向。取向分为单轴取向(如纤维)和双轴取向(如双向拉伸膜)(图10.1),以及空间取向,即三维取向(如厚压板)。本章只讨论用X射线法测定聚合物分子链的单轴和双轴取向.对于分子链择优取向的表征,一是要确定取向单元;二是要选定参考方向.纤维状单轴取向聚合物,取向单元可取聚合物结晶主轴(分子链轴)或某个晶面法线方向;参考方向取外力作用方向或称纤维轴方向。双轴取向单元可取一个晶面;参考方向也可取晶体的某个晶轴或晶面.按两相模型理论,结晶聚合物包含有晶区与非晶区,所以取向分为晶区取向、非晶区取向和全取向.由于材料取向后,在平行于取向方向和垂直于取向方向上表现出不同的光学的、声学的以及光谱方面的性质,据此产生了不同测定取向方法.即有:光学双折射法;声学法;红外二色性法;X射线衍射法和偏光荧光法等。光学双折射法和声学法是基于在平行和垂直取向方向的折光指数(光学双折射法)或声音传播速度(声学法)不同而建立的测定取向的方法。这两种方法均可测定样品总的取向, 即包括晶区取向和非晶区取向.然而两者又有不同,光学双折射法可较好测定链段取向;声学法则可较好反映分子链的取向.红外二色性法是根据平行和垂直取向方向具有不同的偏振光吸收原理建立的方法,它亦是测定晶区与非晶区两部分的总取向。偏光荧光法仅反映非晶区的取向;X射线衍射法则反映出晶区的取向。图10图10。1 单轴和双轴取向示意图保持此晶面所对应的衍射角度(20),目前,单轴取向实验多采用纤维样品架.当由WAXD得到某样品小贝)晶面衍射角度(20)位置后,然后将样品沿甲角(纬度角)在0-保持此晶面所对应的衍射角度(20),195

(完整)第十章聚合物材料取向度录不同平角下的X射线散射强度。图10。2(a)是单轴取向纤维样品架和安装纤维样品架附件的X射线衍射仪(图10。2(b)).(a) 单轴取向纤维样品架(b)Rikagu公司生产的带有单轴纤维样品架附件的X射线衍射仪图10。2单轴取向实验装置对于双轴取向则采用可使样品沿其表面法线方向及与此法向垂直的两个方向旋转,即在不同的纬度角平和经度角v下测定样品的衍射强度.图10。3是具有三轴驱动的X射线衍射仪。如要测量样品在不同温度下拉伸后的结构变化,则需采用带有加热拉伸装置的X射线衍射仪(图10.4)。,U图10。3具有三轴驱动的JEOL公司生产的X射线衍射仪196

(完整)第十章聚合物材料取向度(完整)第十章聚合物材料取向度图10。4日本Rigaku公司生产的带有加热拉伸装置的X射线衍射仪聚合物材料的取向研究,在许多实验室常采用下面的经验公式计算取向度n:180。180。—H180。义100%(10.1)H是赤道线上Debye环(常用最强环)的强度分布曲线的半高宽,用度表示(图10。5).完全取向时H=0°,17=100%;无规取向时H=1800,n=0。此法用起来很简单,但没有明确的物理意义。它不能给出晶体各晶轴对于参考方向的取向关系,只能相对比较.为此Hermans、Stein和Wilchinsky分别提出了单轴取向模型和计算方法.图10图10。5X射线衍射强度曲线半高宽§10.2 单轴取向§10。2。1Stein正交晶系单轴取向模型197

(完整)第十章聚合物材料取向度研究聚合物取向度的通常方法是X射线衍射法和双折射法.前者可测量微晶晶区分子链取向,后者可测量整个分子链或链段的取向, 即晶区和非晶区的全取向。非晶区分子链或链段的取向,可由两种方法测定的差值获得。材料的取向分布函数可以通过X射线衍射极图法得到,此法比较复杂,故不常用.一般采用Hermans提出的取向因子描述晶区分子链轴方向相对于参考方向的取向情况。在单位矢量球中,OZ表示拉伸方向(参考方向),ON是分子链轴方向,中是OZ与ON两方向间夹角,称方位角(亦称余纬角),qj是ON在赤道平面XOY上的投影与OY轴间夹角,称经度角(图10.6).ON对于OZ是均匀分布的,故ON在OZ方向的平均值为〈COS2①>,在OY方向的平均值为〈Sin2①COS2q〉.定义取向因子f为分子链轴方向在纤维轴方向平均值与垂直纤维轴方向平均值之差,即:f二〈COS23>一〈Sin23COS2q>。因此,f值的大小代表了择优取向单元(N)与外力方向(Z)间的平行程度。单轴取向时,q的变化域为图10图10。6单位取向球点阵矢量带[0,2n],所以[0,2n],所以〈COS2q>=1/2。由此Hermans得出取向因子f为:3<COS2>—13<COS2>—1/2(10。2)〈COS2①>称取向参数。由式(10.2)可知,当:a)。无规(任意)取向时,f=0,〈COS2①>=1/3,①=54°44'.b).理想取向(拉伸方向与分子链轴方向完全平行)时,f=1,<COS2①>=1,①=0.c)。螺旋取向时0<f<1,<COS2①>=(2f+1)/3.①=arccos[(2f+1)/3]1/2。d)。ON垂直OZ(环状取向, 即拉伸方向垂直分子链轴方向) 时,f=—1/2,<COS23>=0,①=90°198

(完整)第十章聚合物材料取向度式(10.2)说明,若想求得f,必须知道取向参数<COS2①>。用衍射仪纤维样品架测定取向参数时,<COS2①>计算推导如下:取单位矢量球(图10。7),ON为晶面(hkl)的法线,Ihk1(甲,山)为球面上(中,山)处单位面积衍射强度,则dA面元的衍射强度叫了1咏1s,W)dA,dA=rdpdW=Sin①d①dW.图10。7 取向晶体在单位矢量球中衍射形成的倒易点阵矢量带所以全部取向单位矢量球表面的强度为:J兀J2兀I (p,v)sinpdVdp00hkl单轴取向并考虑到样品衍射图对p的对称性,则取向参数为:.F2cos2.F2cos2p /=-0—I(p)sinpcos2pdp「21(p)sinpdp(10。3)Ihk|(p)是晶面(hkl)随p角变化的衍射强度。当采用纤维样品架做实验时,p角是纤维样品在测角仪上旋转的角度。Hermans取向模型仅给出了纤维轴与分子链轴间的取向关系。Stein进一步发展yHermans的理论,给出正交晶系晶体三个晶轴与纤维轴间的取向关系。设a,b,c是聚合物微晶的三个晶轴,与OZ轴(拉伸方向)的夹角分别为pa,pb,pc(图10。8).199

图10。8则晶轴与拉伸方向的取向关系是:(10.4)cos2中a(完整)第十章聚合物材料取向度Stein正交晶系取向模型(3(3〈cos2中〈cos2图10。8则晶轴与拉伸方向的取向关系是:(10.4)cos2中a(完整)第十章聚合物材料取向度Stein正交晶系取向模型(3(3〈cos2中〈cos2①卜/21(①)sin①cos2①d①0 a a aa卜/21(①)sin①dq卜/21(①)sin①cos2①d①cos2①::=-0 b b b——-b: 卜/21(①)sin①d①0 b bb卜/21(①)sin①cos2①d①cos2中■■■=-0__p2 ^ ^^c 卜/21(①)sin①d①0 c cc式(10。4)中f,fb,f,〉一1)/23<cos2>-1)/2<cos2①〉,<cos2①〉,〈cos2①〉,b>-1/2分别是晶体a,三个晶轴相对于纤维轴OZ的取向因子和取向参数。对于正交晶系:200(完整)第十章聚合物材料取向度〈cos2甲a〉+〈cos2①b〉+〈cos2①c>二1f + f + f = 0(10.5)式(10.5)表示f和〈cos??〉的相关性。只要各自测定f,〈cos2①>中的任意两个量,第三个量便可由式(10.5)关系求出.这种单轴正交取向式(10。5)的关系,可由取向三角形描述(图10.9).图10。9中点1处晶轴c平行于拉伸方向Z;顶点2处为晶轴a平行Z方向;顶点3处为晶轴b平行Z方向.直角三角形竖直边代表晶轴a垂直于Z方向;三角形水平边代表晶轴b垂直于Z方向;三角形斜边代表晶轴c垂直于Z方向.图10。9单轴正交取向三角形若使用照相法测定取向参数,根据球面三角知识,由单位反射球的几何关系可以导出:cos①二cos9sin0(10。6)式(10。6)中9是Bragg角,。是照相底片上以赤道线为起点, 沿Debye环的方位角(图10。10)。由式(10.6)可以求得平均值:201(完整)第十章聚合物材料取向度(10.7)拉伸方面<cos2(10.7)拉伸方面<cos2①>二cos2e〈sin2B>图图10。10照相法拉伸PEX射线衍射强度图这里这里//2//21(P)sin2PcosPdP<sin2p>=-e [兀/21(P)cosPdP0因此相对于三个晶轴a,b,c的取向参数为:〈cos2〈cos2Q>=

a卜/21(P) sin2P0 h0O_ h00卜/2I(P)h00cos20 cosPdPcosPdPh00h00<cos2Qb<cos2Qb〉cos20cosPdP(10。8)cosP dPOkOOkO<cos2Q〉二c<cos2Q〉二c5/21(P) sin2P0 Q0l 00l卜/21(P)0 001cos20 cosPdPcosPdP001 001式(10.8)式(10.8)中的I(B)是(hkl)晶面在Debye环上的衍射强度分布.可知,由X射线照相法可以求得取向因子f:据式(10。2)和(10.7)(10。9)(10。9)202(3cos20;sin2P;,—1)/2(完整)第十章聚合物材料取向度照相法过程复杂,手续烦琐。采用照相法一般是为了获得一个取向聚合物的直观图貌,实际计算聚合物取向关系时已逐渐被衍射仪方法所替代。单轴正交晶系取向关系可用取向等边三角形形象地表达(图10.11)。图10。11中,原点O代表无规取向,三角形三个顶点a,b,c分别代表各晶轴沿拉伸方向(平行于Z轴)的择优取向态;三角形的各边代表某晶轴与拉伸方向垂直,将原点O与各顶点相连,则表示趋向该晶轴的取向状态.图10.11中给出了高密度及低密度聚乙烯沿其分子链轴(c轴)的取向变化情况。这里沿晶轴c的取向加大,其它两晶轴a,b的取向降低.图10.11拉伸PE取向三角形§10.2。2Wilchinsky非正交晶系单轴取向模型Wilchinsky把单轴取向正交晶系的Stein取向模型加以扩展, 应用于非正交晶系.Wilchinsky非正交晶系取向模型如图10.12所示.图10。12中uvz非正交,但u,v正交.OZ表示拉伸方向,oa,ob,oc为晶轴(非正交), 其中oc为分子链轴方向;令u,v,c构成直角坐标系;ON是(hkl)晶面法线,(hkl)晶面在oa,ob,oc轴上的截距分别为m,n,p。令i,j,k为沿u,v,c方向的单位矢量;e,f,g为(hkl)晶面法线ON在u,v,c轴向的方向余弦;Z,出分别是Z,N方向的单位向量。向量Z,N可表示为: ^ ^ ^ ^Z=(cos①)i+(cos中)j+(cos①)k - - - -N=ei+fj+gk所以其点积为:N-Zcos(NxZ)=N-Zcos中所以其点积为:203

(完整)第十章聚合物材料取向度N-ZcosQkl=(完整)第十章聚合物材料取向度N-ZcosQkl=cos① =ecos①+fcos①+gcos中因此, (hkl)晶面的取向函数:=e2:cos23■-:+f2cos23 +g2-cos23:+■■, uz V,Z'. ■■ cZcosp ::+2eg-cos①cosp +2fg:.cos① cos①(10。10)图10.12Wilchinsky 非正交晶系单轴取向模型式(10。10)中最令人感兴趣的是<cos2q〉, 即晶体分子链轴方向C相对于拉伸方向(纤维轴方向)2的取向程度.由式(10。10)可知含有六个未知参数, 一般应测定六个不同晶面的<cos2qhkl>值,方可求算出<cos2q>,工作量是比较大的.然而由于u,v,c正交,因此:,cos2p++(cos2p)十.::cos2p)=1(10.11)加之,晶体存在对称轴与对称面, 从而在用式(10.10)进行计算时, 可以大大简化.表10。1与表出了不同晶系的简化条件.式(10。10)中的e,f,g可由晶胞几何关系计算得出.表10.1不同晶系式(10.10)的简化项对称条件简化结果单斜晶系b,ac平面{icospcosp =(cosp cosp、 u,Z V,Z1 \ V,Z c,Z尸0c,ab平面/cosp cosp =-,cospcosp\ V,Z cZ ' c,Z u,Z)=0正交晶系全部交叉点乘平均值为0四方和六方晶系全部交叉点乘平均值为0且(cosp2uZ)=fcos2p 1V,Z-'对(hko)晶面g=0对(001)晶面及c,a,c±e=f=0, g=1b对c轴任意全部交叉点乘平均值为0且i:cosp2uZ;=fcos2p''' V,Z204

(完整)第十章聚合物材料取向度表10。2确定〈cos2(P〉所必须的独立晶面数显然,对多晶材料式(10。10)既表达了(hkl)晶面的取向,也适合于描述表10。2确定〈cos2(P〉所必须的独立晶面数显然,对多晶材料式向,只不过对(hkl)晶面,称的晶体,假定分子链轴c存在与其等量的(hkl),此时方向余弦为一e,-f,-g和一cos3—)向,只不过对(hkl)晶面,称的晶体,假定分子链轴c存在与其等量的(hkl),fg-cos^- v,zcos①jfg-cos^- v,zcos①j=ge{coswzcos①(10。12)式(10。12)等价于把a,b轴旋转00和1800,且:而e,f,g不变;但此时坐标的参考方向改变了,N=cos①i+cos①j+cos①kN=-cos①i-cos①j+cos①k由上两式求得::cos由上两式求得::cos20- hkl,z[.也可得到式(10。12).如果晶体具有关于c如果晶体具有关于c轴的三重轴对称条件,对于这种情况,它的全部等价反射均可通过将a,b轴转动00,1200和240。来完成,而e,f,g不变.正如对二重轴计算一样,对具有三重轴对称晶(10.13)体,可以导出:(10.13):coswcosw;=::cosw cosw;=;coswcosw;=0■ u,z V,z, ' V,z c,z , c,z u,z(10。14)205cos2(10。14)205cos2wcos2w(完整)第十章聚合物材料取向度式(10.13)和(10。14)对晶体具有四重轴和六重轴情况亦适用.§10.3算例。1聚乙烯(PE)PE是正交晶系,晶胞参数a=0.742nm,b=0。495nm,c=0.255nm。按表10。2可知,如按(hkl)晶面取,最少独立晶面数为2。我们测定了(200),(020)两晶面的衍射强度分布曲线 I(①),I(①)由式(10。3)求出<cos2p〉和<cos2①>,再由式(10.5)得到<cos2①>.结果列于表10.3。表10。3PE的取向参数晶面〈cos2P〉a〈cos2p>〈cos2P〉cfafbfc2000.0184—0。47240200。0137-0.47950。96790.9519由经验公式(10。1)算得=90.7%.。2聚丙烯腈(PAN)PAN属六方晶系,晶胞参数见表10.4。由表10.1可知对PAN式(10.10)中全部交叉点积项为0,且<cos2P〉=<cos2P〉。因此式(10.10)化为:(cos2p 、=e2(cos2pj+f2jcos2p }+g2:;cos2p、二二(e2+f2)('cos2p)+g2(cos2p)表10.4PAN晶胞参数实测值(nm)文献值(Natta,etal.,(1958))a=b=0。585a=b=0.599c=0。507c=0。510对(100)晶面,g=f=0,e=1,所以(10.3)算出〈cos2P 〉,再由式100,z数的PAN的<cos对(100)晶面,g=f=0,e=1,所以(10.3)算出〈cos2P 〉,再由式100,z数的PAN的<cos2P>,fc及c,z表10.5还列出了由经验公式计算的100,z u,z(10。11)求出〈cos2P>的值。表10.5还列出了不同拉伸倍c,z的值.由表10。5可见,PAN的择优取向为c轴,fc很大;值,以作比较.206

(完整)第十章聚合物材料取向度表10。5不同拉伸倍数下PAN的取向值拉伸倍数<C0S2Q>fc60O83400o751081.380o85680.765283.1100o86850.802884o4110o86640.799685.3§10.3。3等规立构聚丙烯(i-PP)(i-PP)是单斜晶系,晶格常数a=0。665nm,b=2。096nm,c=0.650nm, =99。3°(b是单斜轴,b±ac),采用非正交晶系Wilchinsky取向模型,由式(10。10)及表10。1可知,只要测量较强的(040), (110)晶面的1(①),便可得到〈cos24040>=0。9758,<cos24110>=0.0210.对(040)晶面,e=g=0,f=1,则式(10.10)化为〈C0S2Q>=〈cos2Q>;对(110)晶面,g=0,式(10O10)化为<C0S2Q 〉=e2〈C0S2Q〉+f2<C0S2Q 〉,由单斜晶系(110)晶面的几何关系110,z u,z v,z得到e=0.9537o并注意到e2+f2=1和u,v,c的正交性,由式(10.11)可得:e2)e2)C0S29■- 040,Z]/e2将<cos2① z〉, 〈cos2① z〉值代入上式,最后求出<cos2①>=0.8889,fc=0。8355.据经验公040, 110, c,z式求得的n=92%o§10o3o4聚四甲基戊烯一1具有四方晶系的聚4-甲基-1-戊烯纤维, 晶胞参数a=b=1.85nm,c=1。376nm,c轴是分子链轴。由表10.1可知,对于四方晶系方程式(10o10)可简化为:(cos2①,〉=(1—g2)<cos2①〉+g2(cos24〉

hklz u,z c,z再计及正交关系,最后可得到:C0S29 ;=1-g2一2':C0S29 7(1一3g2)c,Z hkl,Z:这样,只要测定一个晶面的1(9),便可求得<cos29 〉,从而得到拉伸方向Z与分子链轴C间的取hkl,z向参数<cos29 〉.如测定1(9),因为g=0,则h207(完整)第十章聚合物材料取向度<cos2<cos2① >二1一2〈cos2①c,z>200,z实际测得<cos2p200,>=0。232,所以实际测得<cos2p200,>=0。232,所以z面的I(p) ,I(p)sin①200〈cos2P>=0.536.图10.13c,zI(p)sinpcos2p 与200 200 200给出了聚4-甲基一1—戊烯(200)晶①200的归一化强度关系曲线。图10。13 聚4-甲基一1一戊烯取向曲线§10.4双轴取向薄板材,薄膜等聚合物材料,在其加工成型过程中必然要受到平面双向拉伸,从而使材料发生形变.研究材料在平面方向上的取向情况,对于掌握调节材料的物理及机械性能是极其必要的.图10。8中,3分别是晶轴a,b,c在XY平面上的投影与Y图10。8中,3分别是晶轴a,b,c在XY平面上的投影与Y轴间的夹角。对于正交晶系,pb,3,3并不是独立的服从下述关系:cos2cos2+cos2b=1c(10。15)(10.16)sinpsinpcos3=cospcospcos3+cospsin3(10.16)sinpsinsinpsinpsin3cospcospsin3 +cospcos3(10。17)这样只要已知p,p这样只要已知p,p,

完全确定。单轴取向时,p中的任意两个角和33a,3b,3c是任意的。3b,3中任意一个,则薄膜结晶样品的取向便可208208(完整)第十章聚合物材料取向度除掉以前已定义的三个取向因子faf,f外,对于双轴取向相对于3a3b'3角的取向因子定义为f=2〈cos230a>-1(10。18)对于某一任意单轴取向f,f,f为3a 3b3c直于薄膜,则除掉以前已定义的三个取向因子faf,f外,对于双轴取向相对于3a3b'3角的取向因子定义为f=2〈cos230a>-1(10。18)对于某一任意单轴取向f,f,f为3a 3b3c直于薄膜,则3=90,f=-1,因此式=2C0S2f=2<cos23〉-1如果取向方向位于薄膜面内,则3=0,若取向方向垂(10.18)中所定义的取向因子f取值范围在1和-1之间。表10.6列出了几种特定情况下的3,<C0S23>和f3值。取向态3(°)cos23f3晶轴位于样品平面YZ中011晶轴相对样品平面YZ随意(单451/20轴取向)晶轴垂直于样品平面YZ900-1表10.6 双轴取向函数ff和f的取值范围〜双轴取向,除上述式(10。15)(10。17)各取向角关系外,其间尚有下述关系相联系:(10.19)sin2①cos23+

sin2①sin23+sin2①cos23+sin2①cos23=1sin2①sin23+sin2①sin23=1cos①cos3=sin①sin①cos(3abacos(3acos(3—3)由此并可导出:cos①cos①sin(3-3)=cos①cos(3+3)abab(10。20)209(完整)第十章聚合物材料取向度f与f无关,亦即单轴取向与双轴取向无关,则可以由式(10。19)推得:)+fb)+(1—fc)(10。21)在正交晶系中,且有:(10。22)这样,六个取向因子中有四个是独立的。只要求得f中的任意四个,①c则晶体的取向分布可得到.在特殊情况下独立变量的个数可以大大减少.比如分子链轴C方向平行于外力拉伸方向Z,则f(完整)第十章聚合物材料取向度f与f无关,亦即单轴取向与双轴取向无关,则可以由式(10。19)推得:)+fb)+(1—fc)(10。21)在正交晶系中,且有:(10。22)这样,六个取向因子中有四个是独立的。只要求得f中的任意四个,①c则晶体的取向分布可得到.在特殊情况下独立变量的个数可以大大减少.比如分子链轴C方向平行于外力拉伸方向Z,则f=1,f=f=-1/2.按图10。14所示,给出双轴取向函数f(D

a1.5个单位;f,f方向各为2个单位.点abf=-f,则独立变量数仅为1个。CD (Dabf和f的直角坐标方向.长方体f方向长为8. Cb代表f=f=f=1;

ab—1;点3为f二fab点6为f=-1,f=18b=-1,f=1;点4为f=f=1,f=-1;—1/2.长方体心(点。)为如果考查垂直于fccf=-1/2;点cf=f二f二0。ab轴截面(图10。bc7为f=f=-1,

ab14中右侧面)1/2,再由式(10。21)有f=-f,故从式(10。点2和点4对角线上的取向,fc=1平面,Z方向。沿此对角线移动,即相当于绕c即晶轴

轴旋转,af=—1/2;c此时18)得到,①YZ);转到f=8a相当于单轴取向,如观察图10。—1,f8b二1晶轴a和b

14最左侧面(即晶轴ac点2代表f=f=1,f=

ab点5为f=f=1,f=-1/2;

ab点8为f=-1,f=1,f=

abf=1.据式(10。22)知,fa=fj—兀a=--8b。如果我们仅关心此平面的c平行于拉伸方向Z,且晶轴a和晶轴b垂直于由f=1,f=-1(即晶轴b垂直于样品平面ab垂直于样品平面YZ);而对角线中点O1,即f=f=0,ab对晶轴c是任意的,或者说晶轴a和b与样品平面成450.(f=-1/2平面),相当于晶轴c垂直样品平面YZ。在此情况下,晶轴a和b所构成的平面平行于由拉伸方向Z所组成的平面.现研究点5和点7构成的对角线上的取向变化,即8a二允+8b,f=f的取向问题.据式(10.21)和(10。22)可知,f=—f。假如考ab a c查这样的取向点,在此点f稍大于-1/2,而f稍小于+1,f取值为b[—1,1]中的任何值,这取决于晶轴b偏离Z方向的变化是在样品平面内,还是垂直于样品平面;同样,f也可取[-1,1]中的任何值,它决定于晶轴a是在样品的平面内,还是垂直于样品平面。a210

1一、这表明在1一、这表明在L2平面上,f和f可取[—1,1]中的任何值,a b1然而,当于=一时,这个

c2平面将降低为一条线;式(10。22)化为:—f [1+f]/(1-f)—3f/(1-f)TOC\o"1-5"\h\z3 2a a23 a》L、— / —c当f=-1时,f=~fa2 33a c类似于上面的讨论,由图10。类似于上面的讨论,由图10。14和式(10。21),(10。22)可以分析在f=0,f=1/2时c的取向.图10.14 图10.14 双轴取向函数f,f和f空间关系实际上对于取向因子实际上对于取向因子f3①,V的定义见图10。7.的计算是很繁杂的.如果已经测定y(hki)晶面的1(甲,v)的强度分布,我们则可以确定相对于z方向的取向分布。特别是在正交坐标系中,当样品处于XY平面中,即中二90。时,Z方向代表样品表面法向N;Y方向代表滚压方向M;X方向代表样品横向T.由表征取向的定义:J兀/2J2兀/即,v)$皿①cos2①dVd①cos24:,=-0 o_p 卜/2J2兀J(①")sin①dVd①0 0(10。23)可以求出相对于(hkl)晶面组的<cos2p >,<cos2p 〉, 〈cos2① 〉。注意到正交关hkl,X hkl,Y hkl,Z系,上述三个平均值只需要算出两个已足够.如果所研究的问题是非正交晶系,则按式(10。10)求出有关晶面的〈cos2P>值,借助前面已讲过的Wilchinsky关系便可求出C轴与拉伸方向间的<cos2P>值。在正交情况下,由于:<cos2p >+<cos2p 〉+<cos2p 〉二1hkl,X hkl,Y hkl,Z211

(完整)第十章聚合物材料取向度所以也可以用等边取向三角形直观地描写取向关系(图10.15)。取向三角形中某点hkl的位置决定于晶面指标h,k,l和取向状态.我们注意到图10。15中,顶点1表示(hkl)晶面法线平行于X轴的完全取向状态,即<cos2p >=1, <cos2p >=<cos2p >=0.点2表示(hkl)晶hkl,X hkl,Y hkl,Z面法线垂直于X轴,位于YZ平面内,所以:<C0S2p >=0, 〈C0S2p >+〈C0S2p 〉二1hkl,X hkl,Y hkl,Z图10。15双轴取向三角形等边三角形面心点3则代表无规取向,即:〈C0S2〈C0S2p 〉hkl,X=<C0S2p >=hkl,Y〈C0S2P 〉=1/3hkl,Z位于等边三角形中线上的点4则代表相对于Z轴的单轴取向态,即:(1一〈C0S2P >)/2hkl,Z<C0S2p 〉(1一〈C0S2P >)/2hkl,Zhkl,X hkl,Y同样,相对于X轴和Y轴的单轴取向,分别为在等边三角形X轴和Y轴的中线上,且有:cos2phkl,Ycoscos2phkl,Ycos2phkl,Z一:cos2p- hkl,Xcos2phkl,Zcos2phkl,X一:cos2p- hkl,Y如果外力方向为Z,则由X射线实验可以测定 (hkl)晶面法线的〈C0S2P 〉值;如果外力拉伸hkl,Z方向平行于样品表面,即在Y方向。那么为了求得〈C0S2P 〉则需要进行角坐标的转换,即将hkl,Yp,vp,v;I(p,V) I(p,V).这里p,v,p,v分别是对Z方向,Y方212

(完整)第十章聚合物材料取向度向的余纬角和经度角(图10.6)。同理可求〈cos2① >,或者由正交关系,已知两个均方余弦,hkl,X第三个即可很容易得出.对于正交晶系可用Stein模型,对非正交晶系则用Wilchinsky模型求得其晶轴(比如①相对于X,Y,Z三方向的均方余弦.作为例子,我们考虑等规聚丙烯i-PP的取向。由(040),(110)两晶面可以求出,〈C0S2①〉二0。09,再由坐标转换方法得到〈C0S2①>=0。09,<cos2①>=0。c,Z c,X c,Y82.图10。16是用三角形法直观地给出了晶体c轴沿拉伸方向Y择优取向.X射线极图测量方法的几何配置一反射法X射线极图测量方法的几何配置一反射法图10.16i-PP双轴取向三角形对于双轴取向的测定,用X射线方法是采取极图仪进行实验测量.极图可以比较清楚地表现出材料的取向分布.所测定的(hkl)晶面的极图,就是(hkl)晶面法向的空间分布,亦即(hkl)晶面的极密度在样品表面所在平面的极射赤道面投影值。其实验方法简单说来就是选取某(hkl)晶面,固定此晶面对应的衍射角2不变,使样品绕其平面法向及与此法向垂直的两个方向进行旋转,即在不同的经纬角①,v下测定各点的衍射强度I(①,v)值。实测时是把透射法和反射法相结合。在0«v«2n下,如果在0<a<60°范围内采用透射法(a为纬度角);在600<a<90°范围内采用反射法。 图10.17(2)给出了透射法与图10。17(1)反射法的原理图.由于聚合物样品的晶体对称性和X射线吸收系数与金属样品相比要低得多, 因此对聚合物样品而言更适宜于采用透射法。图10。17(1)213(完整)第十章聚合物材料取向度图10。图10。17(2)X射线极图测量方法的几何配置一透射法图10.17(2)是右手直角坐标系表示的透射法样品置于YZ平面实验几何配置.XY面位于X射 A ->线入射方向(S)和反射方向(S)平面中.样品绕Z轴(拉伸方向M)转动.当纬度角a=0。,即①0=900(余纬角①=900-a)时,样品位于YZ平面中,此时为对称透射配置.当a=0。时与Y轴重合的散射平面的极图落于样品平面内,此时如将样品绕与X轴重合的垂直样品表面法线方向N旋转(甲转动),则可测得a=00的X射线散射极图。绕Z轴旋转(a丰00),同时再进行绕样品法向N轴旋转(牛转动),可得a丰00时不同纬度角下,在某一确定下,v由0t2冗,a由0.叮2的极图.应注意到,当a丰00时,透射法实验几何配置是非对称的.由图10。17(2)可知,当a—900-0时,由于X射线衍射线束平行于样品表面,透射法在此角度下不适用;透射法一般使用于0<a<600.图10.17(1)是X射线反射法测定片状样品极图的实验几何配置.反射法中,绕X轴进行纬度角a的改变。当a=00时,样品是置于赤道面XY内(样品置于XY平面),样品法线N与Z轴重合.通常拉伸方向平行于X轴,由图中可见,对于反射法最合宜的几何布置是当a=900,即法线N与Y轴重合.前知,由透射法已测定了a=00—600极图靠外侧部分的结果,其余部分,即a=600—900,极图中心部分的结果则由反射法测定.为此,最常用的实验方法是先选一些经度角V,对每一个确定的v下,使纬度角a在300—900范围进行扫描,对于a=300—600这部分与透射法相重叠的测定值,可用作为这两种方法散射强度的比例归一。将由实验所测定的I0(①,v)经背底校正,角因子校正,吸收校正和非相干散射校正后,再经透射、反射强度的转换,将透射强度转换为反射强度1(①,v),并算出所测(hkl)晶面的平均衍射强度■;<:■■。J兀/2j2兀/(①,v)sin①dVd中:[I;=T0-^ 尸/2j2兀I即,v)dvd①0 0(10.24)214

(完整)第十章聚合物材料取向度这样即可求得各①,V角下对应的规一化相对极密度:I'=I( ① , V) / :7;(10.25)式中I(①,V)是经各种校正和转换后所具有的衍射强度值.图10.18是i—PP(040)晶面的极图.图10。18i-PP(040)晶面极图图10.18中的各同心园代表不同的a(或中)值,由外向里(箭头方向)a值增大;V角变化方向如图中箭头所示。由图中可以看到i-PP的(040)晶面极密度I'(①,v)大部分小于1,特别是在X方向,而在拉伸方向Y,极密度I’值则大些,垂直于样品平面XY样品表面法线的中心部位附近,极密度要大得多,说明取向是沿着样品拉伸方向产生的.聚偏氟乙烯(PVDF)具有a,B,y三种晶型,采用Wilchinsky非正交晶系取向模型,对a型聚偏氟乙烯,测定(020), (110)两晶面的衍射强度,根据下式求得单轴拉伸下晶面法线与c轴之间的均方余弦:"cos2①)=1-1.2647(cos2①]■一0.7353(cos2①:(a) (110)晶面在100cC拉伸比为4。2215(完整)第十章聚合物材料取向度(b) (110)晶面在160cC拉伸比为2.5图10.19聚偏氟乙烯(110)晶面极图图10.19是单轴拉伸聚偏氟乙烯(110)晶面在不同温度不同拉伸比时的极图。图10。19清楚地表明,聚偏氟乙烯(110)晶面法线均匀分布在垂直于拉伸方向平面的上下.在拉伸方向具有较高的极密度。图10.19(a)表明靠近拉伸方向X轴极密度是远离X轴极密度的5~6倍;图10.19(b)表明靠近X轴极密度是远离X轴极密度的3〜6倍。有兴趣的是在X方向,远离X轴时,此时极密度要比极图中心处极密度大。这可能表明在小拉伸比下,材料被拉伸时,分子链的取向排列优先表现在施力点附近;同时,高温条件下拉伸与低温条件下拉伸相比,极密度的变化范围更广阔些。§10。5取向非晶态聚合物材料的结构分析取向非晶聚合物由于其散射强度弱,它的取向态结构分析具有其特殊性.目前主要采用三维取向分布函数(ODF)方法和圆柱分布函数(CDF)方法。§10。5.1取向非晶态聚合物材料取向态结构分析的ODF方法非晶聚合物在外场作用下呈现的取向态结构,可采用三维ODF方法去描述它的取向态结构,给出取向后分子链分布状态。对于单轴取向,其取向分布函数为:D(夕)=£(4n+1);P(cos夕)P(cos夕)"2n d2nn=0(10。=£(4n+1)P(cos夕);P(cos夕)/-.P(cos夕)?(10。■2n ,i2n 2n 'm26)216

(完整)第十章聚合物材料取向度式中,9为拉伸方向与取向单元间夹角。由于单轴拉伸取向具有圆柱对称性和反演中心,因此Legendre多项式而(P(cos9) 代表一个球谐函数分量P2(cos9)振幅的平均值。Legendre几项为:P(cos9)仅含有偶次项.多项式(完整)第十章聚合物材料取向度式中,9为拉伸方向与取向单元间夹角。由于单轴拉伸取向具有圆柱对称性和反演中心,因此Legendre多项式而(P(cos9) 代表一个球谐函数分量P2(cos9)振幅的平均值。Legendre几项为:P(cos9)仅含有偶次项.多项式P(cos9)的前P(cosq)=10P(cosq)=(3cos29-1)/2P(cos9)=(35cos49—30cos29+3)/84(P2(cos?))它是在所考虑的9角范围[0,冗/2]内,由一个取向分布函数D(9)分量P2(cos9)之积,所以第2n个球谐函数的振幅为:和一个球谐函数(10.27):P(cos^)\=』2D(9)P(cos?)sinqd?-2n 胆0 2n引进X射线散射强度,可以把取向分布函数D(9)清晰地表达出来.在取向态下,式(10.26)中的('P(cos%)为与非晶聚合物各晶面总的散射强度I(h,①)有关:P(cosy))二卜2■2n ■'I0I(h,叫P2“(cosy)sin①d①/卜21(h,3)sin①d①0(10.28)式中:h=4兀49,6是Bragg角,九是X射线波长.九而式(10。26)中的P(cosy)):2n m为与非晶聚合物在29B处某晶面取向单元的散射强度I忆,甲)有关:P(cosy);二上2,2n 'm0I(h,y)P(cosy)sinydy/卜21(h,y)sinydy(10.29)这样,当测出了I(h,y)和I(hB,y)后,即可藉助式(10。28)和(10.29),由式(10。26)得到三维全取向分布函数D(9)。§10.5.2取向非晶态聚合物材料取向态结构分析的CDF方法取向非晶聚合物结构研究的另一种方法是圆柱分布函数(CDF)方法。自上世纪50年代由Norman首先采用该方法解决纤维素的取向结构后,进入80年代该方法得到了飞速地发展.217(完整)第十章聚合物材料取向度设取向后样品中位于距原点为r,分子链轴与拉伸方向间夹角为0处的具有圆柱对称性原子数密度分布为p(r,①).对于这种原子数密度呈圆柱对称分布的取向非晶聚合物结构分析,主要采用CDF方法。把以球面坐标表征的CDF(r,①),按Legendre多项式P(cos9)展开:CDF(r,3)=4nrtp(r,①)一p]=EW(r)P(cos①) (10.30)n=0式中,p0为体系的平均原子数密度,p(r,中)为二维原子数密度分布.W(r)=(一1)n丝尸h21(h)j(hr)dhTOC\o"1-5"\h\z2n 兀0 2n 2n(10。31)其中,h=4兀S'n,,9为Bragg角,九为X射线波长,j为球面Bessel函数,I(h)为散射九 2n 2n强度:/I(h)=(4n+1))"2I(h,①)P(cos^)sin^dW (10。2n 0 2n32)I(hM)为采用透射法测得的X射线散射强度;得到I(九9)后,由式(10。30)〜(10。32)可求出CDF(r,①)分布.CDF方法是用来描述单轴取向非晶聚合物原子密度二维分布的结构特性。径向分布函数(RDF)方法(见第十三章)则是表征各相同性非晶聚合物原子密度的一维分布的,可以描述无取向非晶聚合物的结构特性。将CDF方法与RDF方法相结合,可以获得取向非晶态聚合物样品分子链内和分子链间的相关结构参数.CDF方法克服了RDF方法难于将分子链内和分子链间引起的RDF峰分离的困难,可较好地表达非晶聚合物分子链构象及其链堆砌结构。最近,有文献报道,采用全倒易空间X射线衍射法,结合衍射曲线拟合分峰,并以PET样品为例,研究了具有择优取向聚合物的结晶度和取向问题。该方法通过一次全倒易空间X射线散射强度的测量,可得到主要晶面和晶轴取向的分布情况;由于采用分峰解析,排除了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论