交通工程学课件_第1页
交通工程学课件_第2页
交通工程学课件_第3页
交通工程学课件_第4页
交通工程学课件_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

交通工程学课件演示文稿目前一页\总数三十六页\编于二十二点交通工程学课件目前二页\总数三十六页\编于二十二点4.2概率统计模型4.2概率统计模型◆基本概念

1)交通流分布:交通流的到达特性或在物理空间上的存在特性;2)离散型分布(也称计数分布):在一段固定长度的时间内到达某场所的交通数量的波动性;3)连续型分布(时间间隔分布、速度分布等):在一段固定长度的时间内到达某场所交通的间隔时间的统计分布;4)研究交通分布的意义:预测交通流的到达规律(到达数及到达时间间隔),为确定设施规模、信号配时、安全对策提供依据。目前三页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布

■车辆的到达具有随机性

描述对象:

在一定的时间间隔内到达的车辆数,

在一定长度的路段上分布的车辆数。

目前四页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布■

1.泊松分布:

■适用条件:车辆(或人)的到达是随机的,相互间的影响微弱,也不受外界因素干扰,具体表现在交通流密度不大;

■基本模型:计数间隔t内到达k辆车的概率λ:平均到达率(辆或人/秒)m:=λt,在计数间隔t内平均到达的车辆或人数,也称为泊松分布参数。目前五页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布■

分布的均值M与方差D都等于,这是判断交通流到达规律是否服从泊松分布的依据。■

运用模型时的注意点:关于参数m可理解为时间间隔t内的平均到达的车辆数。目前六页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布目前七页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布目前八页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布目前九页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布目前十页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布■

5.拟合观测数据的参数计算

■观测数据的均值

式中,g——观测数据的分组数

fj——计算间隔t内到达kj辆车发生的次数

kj——计算间隔t内到达kj车辆数N——观测的总计间隔数目前十一页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布

■观测数据的方差

■若观测数据S2/M比值接近1时,用泊松分布拟合,因为泊松分布的均值M和方差D是相等的。当S2/M比值显著不等于1时,就不能用泊松分布拟合。

■若观测数据S2/M比值显著大于1时,用二项分布拟合不合适,因为二项分布的均值M大于方差D。应采用负二项分布拟合。目前十二页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布—例题

■例:在某公路上,以15s间隔观测达到车辆数,得到的结果如下表:

1、求上表数据的均值和方差,并在泊松分布和二项分布中选择最适合拟合表中数据的分布模型;2、写出所选定分布模型的结构,并求出相应的参数。3、根据确定的车辆到达数分布模型,预测15s内有4辆车到达的概率是多少?车辆到达数kj<33456789101112>12包含kj的间隔出现次数

0318101110119110目前十三页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布—例题

[解]:1、观测数据的均值和方差目前十四页\总数三十六页\编于二十二点4.2概率统计模型4.2.1离散型分布—例题

■2、因观测数据S2>M,故用二项分布拟合。则二项分布函数为:■3、

目前十五页\总数三十六页\编于二十二点4.2概率统计模型4.2.2连续型分布目前十六页\总数三十六页\编于二十二点4.2概率统计模型4.2.2连续型分布目前十七页\总数三十六页\编于二十二点4.2概率统计模型4.2.2连续型分布目前十八页\总数三十六页\编于二十二点4.2概率统计模型4.2.2连续型分布目前十九页\总数三十六页\编于二十二点4.2概率统计模型4.2.2连续型分布目前二十页\总数三十六页\编于二十二点4.2概率统计模型车头间隔数目计算

车头间隔是连续的,可认为服从负指数分布。设小时交通量为(辆/h),(1)大于某一时间的间隔数目为(2)在一小时内从时间间隔出现的数目为目前二十一页\总数三十六页\编于二十二点4.2概率统计模型车头间隔数目计算

因,故有,(3)一小时大于时间的间隔的总时间为(4)大于时间的间隔的总时间在一个小时内占的比率目前二十二页\总数三十六页\编于二十二点4.2概率统计模型车头间隔数目计算

(5)大于时间的间隔的平均时间(6)小于时间的间隔数目为目前二十三页\总数三十六页\编于二十二点4.2概率统计模型车头间隔数目计算

(7)小于时间的间隔总的时间(8)小于时间的间隔总的时间在一个小时内占的比率

(9)小于时间的间隔的平均时间目前二十四页\总数三十六页\编于二十二点4.2概率统计模型车流间隙问题

■行人过街以及车辆从支路上出来,或汇流到主干道上的车流中、或穿越主干道,都要找主干道上车流中的间隙机会才有可能。间隙机会的计算也可利用泊松公式。当时,有表示在计数间隔t秒时距内无车到达。既然是无车抵达t秒就是一个间隙机会。

目前二十五页\总数三十六页\编于二十二点4.2概率统计模型车流间隙问题

■定义

■交通流的开段

道路上车流间隔可以让横向车流安全穿过的间隔。

■交通流的闭段

道路上车流间隔不能让横向车流安全穿过的间隔。

■开段和闭段决定临界时间()。

■临界时间()

道路上车流间隔刚刚能让横向车流安全穿过的最小间隔时间,

目前二十六页\总数三十六页\编于二十二点4.2概率统计模型车流间隙问题■如果在t秒时间内无车到达,那么在t小于的时间内也必然是无车到达。于是可看作为车流中出现车头时距的机会的平均数。因此由上式所算得的概率,可以认为是在车流中所有至少是与选定时间一样长的间隙累计次数的百分率:

目前二十七页\总数三十六页\编于二十二点4.2概率统计模型交通流的开段与闭段

■定义

■交通流的开段

道路上车流间隔可以让横向车流安全穿过的间隔。

■交通流的闭段

道路上车流间隔不能让横向车流安全穿过的间隔。

■开段和闭段决定临界时间()。

■临界时间()

道路上车流间隔刚刚能让横向车流安全穿过的最小间隔时间。目前二十八页\总数三十六页\编于二十二点4.2概率统计模型交通流的开段与闭段

■大于临界时间的车头间隔为开段,小于或等于临界时间的车头间隔为闭段。开段和闭段是相互交替出现,开段和闭段出现次数是相等的。■

若交通流为,临界时间为

(1)大于的时间间隔数目(开段数目)为:(2)开段总的时间为目前二十九页\总数三十六页\编于二十二点4.2概率统计模型交通流的开段与闭段

(3)开段在1小时内占的时间比例为(4)闭段时间间隔数目=开段时间间隔数目(5)闭段总的时间为目前三十页\总数三十六页\编于二十二点4.2概率统计模型交通流的开段与闭段

(5)闭段总的时间为(6)平均每一个闭段的时间为目前三十一页\总数三十六页\编于二十二点4.2概率统计模型例题讲解

例1

某地市道路交通认为280辆/h,道路宽度为15m,平均行人速度为1.2m/s,试求一小时内允许行人通过道路的次数和时间。

目前三十二页\总数三十六页\编于二十二点[解]:道路的宽度W=15m,行人速度为1.2m/s,行人横过道路的时间为t=15/1.2=12.5(s)

一小时内能让行人横过道路的次数为:一小时内能让行人横过道路的总时间为:4.2概率统计模型目前三十三页\总数三十六页\编于二十二点

平均每次让行人横过道路的时间为:4.2概率统计模型目前三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论