




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于消元解二元一次方程组第1页,课件共16页,创作于2023年2月课前故事第2页,课件共16页,创作于2023年2月第3页,课件共16页,创作于2023年2月喜
喜讯
炎炎夏日即将来临,为鼓励广大学子努力学习,本店近期举办“小小会计之星”活动。只要你是学生,只要你能答对问题,我们就为你免单!同学们快来试试吧!你好,欢迎光临肯德基!想要参与我们的活动就请先选个题吧!第4页,课件共16页,创作于2023年2月如果一个全虾堡比一杯圣代多6元,买一杯圣代和两个全虾堡共需30元,你能算出一杯圣代多少元吗?一个全虾堡是多少元呢?6的价钱的价钱30的价钱的价钱第5页,课件共16页,创作于2023年2月
“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程问题,因此,一旦解决了方程问题,一切问题将迎刃而解!”
——法国数学家
笛卡儿[Descartes,1596-1650
]名人语录第6页,课件共16页,创作于2023年2月xy=6x2y=30+解:设一杯圣代为x元,一个全虾堡为
y元,则解:设一杯圣代为x元,一个全虾堡为
(x+6)元,则x+2(x+6)=30探究新知
-6的价钱的价钱30的价钱的价钱y–x=6
x+2y=30第7页,课件共16页,创作于2023年2月30元的价钱的价钱.6元的价钱的价钱6的价钱的价钱y
-x=6y=x+6x+2=30
(x+6)6元的价钱6元的价钱第8页,课件共16页,创作于2023年2月观察你所列的二元一次方程组和一元一次方程有什么关系?
能否将二元一次方程组转化为一元一次方程进而求得
方程组的解呢?
探究新知
y–x=6
①②x+2y=30y=x+6x+2
=30y(x+6)
将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法(substitutionmethod)。第9页,课件共16页,创作于2023年2月例2解方程组2y–3x=1x=y-1①②变:2y–3x=1x–y=–1①②谈谈思路:解:把②代入①得:2y–3(y–1)=12y–3y+3=12y–3y=1-3-y=-2y=2把y=2代入②,得x=y–1=2–1=1∴方程组的解是x=1y=2第10页,课件共16页,创作于2023年2月例3解方程组解:①②由①得:x=3+y③把③代入②得:3(3+y)–8y=14把y=–1代入③,得x=21、将方程组里的一个方程变形,用含有一个未知数的式子表示另一个未知数;2、用这个式子代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;3、把这个未知数的值代入上面的式子,求得另一个未知数的值;4、写出方程组的解。用代入法解二元一次方程组的一般步骤变代求写x–y=33x-8y=149+3y–8y=14–5y=5y=–1∴方程组的解是x=2y=-1说说方法:第11页,课件共16页,创作于2023年2月2.用代入消元法解方程组2x
–3y=1①,y=x+2②最简便的方法是先把
代入
,消去
未知数
,所得的方程化简后是()巩固新知变代求写二元一次方程组一元一次方程消元A.5x=–1B.–x=10C.5x=–5D.–x=71.已知3x+y=1,用含x的式子表示y,
则y=
。1
–
3x②①yD第12页,课件共16页,创作于2023年2月3.用代入消元法解下列方程组x=–3yx+7y=8(1)巩固新知变代求写二元一次方程组一元一次方程消元
x–y=33x–8y=14(2)2x–y=53x+4y=2(3)第13页,课件共16页,创作于2023年2月变代求写巩固新知二元一次方程组一元一次方程消元
4.比一比,看谁能用巧妙的方法解下列方程组第14页,课件共16页,创作于2023年2月课堂小结2.我们已经学习了解二元一次方程组的哪些知识?1.解二元一次方程组的基本思想是什么?变代求写二元一次方程组一元一次方程消元把二元一次方程组中的一个方程的未知数用含另一个未知数的式子表示出来,即x=….
或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供应合同范本写
- 240钻机租赁合同范本
- epc工程合同使用合同范本
- 人工加材料合同范本
- 全新货车购车合同范例
- 保险公司担保贷款合同范本
- it 顾问合同范本
- 分公司发票合同范本
- 代招合同范本
- 出租摩托协议合同范本
- 2025年江苏商贸职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 科技与教育的融合小学科学探究式学习的实践案例
- 2025年浙江绍兴杭绍临空示范区开发集团有限公司招聘笔试参考题库附带答案详解
- 煤矿隐蔽致灾因素普查
- 2025年春季1530安全教育记录主题
- DBJ33T 1271-2022 建筑施工高处作业吊篮安全技术规程
- 2025年3月日历表(含农历-周数-方便记事备忘)
- 消化内镜护理讲课
- 《中国人口老龄化》课件
- 静脉采血最佳护理实践相关知识考核试题
- 检验检测中心检验员聘用合同
评论
0/150
提交评论