




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市松溪县第一中学高三数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知是虚数单位,则等于 A B C D参考答案:A略2.一个三棱锥的三视图是三个直角三角形, 如图所示,则该三棱锥的外接球的表面积为 (A)29 (B)30 (C) (D)216参考答案:C略3.如图为某几何体的三视图,则其体积为()A. B. C. D.参考答案:D【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体由左右两部分组成,左面是一个圆柱的一半,右面是多面体(可以看做是由一个三棱柱去掉一个三棱锥后剩下的几何体).【解答】解:由三视图可知:该几何体由左右两部分组成,左面是一个圆柱的一半,右面是多面体(可以看做是由一个三棱柱去掉一个三棱锥后剩下的几何体).该几何体的体积=+=.故选:D.4.如图,己知,∠AOB为锐角,OM平分∠AOB,点N为线段AB的中点,,若点P在阴影部分(含边界)内,则在下列给出的关于x、y的式子中,①x≥0,y≥0;②x-y≥0;③x-y≤0;④5x-3y≥0;⑤3x-5y≥0.满足题设条件的为(
)A.①②④
B.①③④
C.①③⑤
D.②⑤参考答案:B5.某地为上海“世博会”招募了20名志愿者,他们的编号分别是1号、2号、…、19号、20号.若要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的在另一组.那么确保5号与14号入选并被分配到同一组的选取种数是(
)A.16 B.21 C.24 D.90参考答案:B考点:计数原理的应用.专题:计算题;应用题.分析:本题是一个分类计数问题,要确保5号与14号入选并被分配到同一组,则另外两人的编号或都小于5或都大于14,于是根据分类计数原理得到结果.解:由题意知本题是一个分类计数问题,要“确保5号与14号入选并被分配到同一组”,则另外两人的编号或都小于5或都大于14,于是根据分类计数原理,得选取种数是C42+C62=6+15=21,故选B点评:本题考查分类计数原理,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,相加得到结果.6.在平面直角坐标系中,已知向量若,则x=(
)A.-2
B.-4
C.-3
D.-1参考答案:D7.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,则关于函数f(x)有以下四个命题:①f(f(x))=0;②函数f(x)是偶函数;③任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立;④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.其中真命题的个数是()A.4 B.3 C.2 D.1参考答案:B【考点】分段函数的应用.【专题】空间位置关系与距离.【分析】①根据函数的对应法则,可得不管x是有理数还是无理数,均有f(f(x))=1;②根据函数奇偶性的定义,可得f(x)是偶函数;③根据函数的表达式,结合有理数和无理数的性质;④取x1=﹣,x2=0,x3=,可得A(,0),B(0,1),C(﹣,0),三点恰好构成等边三角形.【解答】解:①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0,∴当x为有理数时,ff((x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1,即不管x是有理数还是无理数,均有f(f(x))=1,故①不正确;接下来判断三个命题的真假②∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有f(﹣x)=﹣f(x),故②正确;③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数,∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;④取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0,∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.即真命题的个数是3个,故选:B.【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.8.已知函数f(x)=sin(ωx+2φ)﹣2sinφcos(ωx+φ)(ω>0,φ∈R)在(π,)上单调递减,则ω的取值范围是()A.(0,2] B.(0,] C.[,1] D.[,]参考答案:C【考点】三角函数中的恒等变换应用.【分析】利用积化和差公式化简2sinφcos(ωx+φ)=sin(ωx+2φ)﹣sinωx.可将函数化为y=Asin(ωx+φ)的形式,在(π,)上单调递减,结合三角函数的图象和性质,建立关系可求ω的取值范围.【解答】解:函数f(x)=sin(ωx+2φ)﹣2sinφcos(ωx+φ)(ω>0,φ∈R).化简可得:f(x)=sin(ωx+2φ)﹣sin(ωx+2φ)+sinωx=sinωx,由+,(k∈Z)上单调递减,得:+,∴函数f(x)的单调减区间为:[,],(k∈Z).∵在(π,)上单调递减,可得:∵ω>0,ω≤1.故选C.【点评】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.9.已知,,,则(
)A. B. C. D.参考答案:B【分析】本题采用中间值比较法,对三个数进行比较大小,利用指数函数和对数函数的单调性,指数式和1进行比较,对数式和零进行比较,最后得出答案.【详解】,,,所以本题选B.【点睛】本题综合考查了对数式、指数式的比较大小.解决本题的关键是掌握指数函数、对数函数的单调性以及一些特殊点的特征.本题采用了中间值的比较方法.10.在△ABC中,已知D是AB边上一点,,,则等于(
)A. B. C. D.参考答案:A【分析】利用向量的减法将3,进行分解,然后根据条件λ,进行对比即可得到结论【详解】∵3,∴33,即43,则,∵λ,∴λ,故选:B.【点睛】本题主要考查向量的基本定理的应用,根据向量的减法法则进行分解是解决本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.观察下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其
构成真命题(其中l、m为直线,α、β为平面),则此条件为________.①?l∥α;②?l∥α;③?l∥α.
参考答案:l?α线面平行的判定中指的是平面外的一条直线和平面内的一条直线平行,故此条件为:l?α.12.已知,则=
。参考答案:513.在边长为1的正方形ABCD中,E、F分别为BC、DC的中
点,则__________.参考答案:略14.已知圆和两点,若点P在圆C上且,则满足条件的P点有
个.参考答案:2考点:圆的标准方程15.已知单位圆的圆心在原点,圆周上的六个等分点其中落在x正半轴上,且这六个点分别落在以原点为始点,X非负半轴为始边的∠的终边上,所有的∠可表示为__________________(用一个含的式子表示)。参考答案:略16.的展开式中的系数是
参考答案:17.函数的单调递增区间是
.参考答案:答案:(,+)解析:对f
(x)求导,f’
(x)=lnx+1,令f’
(x)>0得x>,从而知f
(x)的单调增区间为(,+)。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知二次函数.若的解集是(1)求实数,的值;(2)求函数在上的值域.参考答案:解:(1)不等式的解集是,故方程的两根是……………2所以…………4所以………………6(2)由(1)知,……………8,在上为减函数,在上为增函数当时,取得最小值为当时,取得最大值为函数在上的值域为………………12
略19.某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为,(>),且不同种产品是否受欢迎相互独立。记为公司向市场投放三种新型产品受欢迎的数量,其分布列为0123
(1)求该公司至少有一种产品受欢迎的概率;(2)求,的值;(3)求数学期望。参考答案:设事件表示“该公司第种产品受欢迎”,=1,2,3,由题意知,,
(1分)(1)由于事件“该公司至少有一种产品受欢迎”与事件“”是对立的,所以该公司至少有一种产品受欢迎的概率是,
(3分)(2)由题意知,,整理得且,由,可得.
(7分)(3)由题意知,
(9分)
(10分)因此
(12分)
20.现给出三个条件:①函数f(x)的图象关于直线对称;②函数f(x)的图象关于点对称;③函数f(x)的图象上相邻两个最高点的距离为π.从中选出两个条件补充在下面的问题中,并以此为依据求解问题.已知函数(,),_____,_____.求函数f(x)在区间上的最大值和最小值.参考答案:见解析【分析】方案①③与②③,都有周期可求得,再由型函数的对称轴与对称中心求得,即可表示解析式,最后由三角函数的性质求得指定区间的最值;方案①②中,由对称轴与对称中心可构建方程组,分别表示与,利用分类讨论和时的情况,其中若T小于所求区间范围的区间长度,则最值由振幅确定,反之则可由性质求值域.【详解】方案一:选①③.由已知,函数的最小正周期,所以,,所以.令,得,.所以的对称轴方程为,.令,,由,得.综上,.因为,所以.所以当或,即或时,;当,即时,.方案二:选②③.由已知,函数的最小正周期,所以,,所以.所以,于是,.由,得.综上,.因为,所以.所以当,即时,;当,即时,.方案三:选①②.由已知可知其中一个对称轴与对称中心,则,解得因为,则,即或0当时,因为,则当时,,则又因为区间的区间长度为,所以函数在区间上的最大值为和最小值为,显然时也成立,当时,因为,则当时,,则此时函数,则其在区间上有,即,故最大值为,最小值为,当时,,则,所以函数在区间上的最大值为和最小值为,显然时也成立综上所述,函数和函数在区间上的最大值为和最小值为;函数在区间上最大值为,最小值为.【点睛】本题考查由三角函数的性质求解析式,还考查了求指定区间的最值,属于难题.21.(本小题满分10分)等差数列的前项和为的通项式.参考答案:22.(本小题满分12分)如图,已知多面体中,平面,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求点到平面的距离的取值范围.参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游客运企业文化建设与团队精神考核试卷
- 生活初二语文满分作文
- 女娲补天初二语文作文
- 妈妈做饭的初三语文作文
- 矿石开采的环境保护与生态建设考核试卷
- 电能表的电网能效提升技术发展策略研究考核试卷
- 市场调查在人力资源行业的应用考核试卷
- 稀土金属压延加工质量成本控制方法考核试卷
- 渔业与食品安全体系的协同管理考核试卷
- 竹材物理性能与加工适应性研究考核试卷
- 锅炉延期检验申请书
- 部编版道德与法治三年级下册第三单元《我们的公共生活》大单元作业设计案例(一)
- 机械设计手册:单行本 液压传动(第六版)
- 红色故事宣讲《小萝卜头的故事》
- 活动板房拆装合同模板范本
- GPS在森林调查中的应用-手持GPS在森林调查中的应用(森林调查技术)
- 直接打印800字作文纸
- 武汉市轨道交通一号线某期工程土建施工投标施工组织设计
- 《军队政治工作手册》出版
- 2023年科技特长生招生考试试卷word
- 考试答题卡模板通用
评论
0/150
提交评论