湖北省恩施市花坪民族中学2022年高二数学理下学期期末试卷含解析_第1页
湖北省恩施市花坪民族中学2022年高二数学理下学期期末试卷含解析_第2页
湖北省恩施市花坪民族中学2022年高二数学理下学期期末试卷含解析_第3页
湖北省恩施市花坪民族中学2022年高二数学理下学期期末试卷含解析_第4页
湖北省恩施市花坪民族中学2022年高二数学理下学期期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省恩施市花坪民族中学2022年高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.数列-1,3,-5,7,-9,…的一个通项公式为(

).A. B.C. D.参考答案:C2.命题,;命题,使得,则下列命题中为真命题的是(

).A. B. C. D.参考答案:C,,令,,∴是真命题,,,∵,∴,∴是假命题,∴是真命题.故选.3.如图所示,执行如图的程序框图,输出的S值是A.1 B.10 C.19 D.28参考答案:C【分析】逐条执行程序框图即可【详解】由程序框图得:,,成立,,,成立,不成立,输出:,故选:C.【点睛】本题主要考查了程序框图知识,只需逐条执行即可看出规律,属于基础题。4.若为的各位数字之和,如则,记则(

)A

3

B

5

C8

D

11参考答案:B5.下列命题中,不是真命题的是(

)A.命题“若,则”的逆命题.B.“”是“且”的必要条件.C.命题“若,则”的否命题.D.“”是“”的充分不必要条件.参考答案:A6.若关于x的一元二次方程x2+ax﹣2=0有两个不相等的实根x1,x2,且x1<﹣1,x2>1,则实数a的取值范围是()A.a<﹣1 B.a>1 C.﹣1<a<1 D.a>2或a<﹣2参考答案:C【考点】一元二次方程的根的分布与系数的关系.【分析】由题意设f(x)=x2+ax﹣2,由条件、函数与方程的关系、一元二次函数的图象列出不等式,求出实数a的取值范围.【解答】解:由题意设f(x)=x2+ax﹣2,∵方程x2+ax﹣2=0有两个不相等的实根x1,x2,且x1<﹣1,x2>1,∴,则,解得﹣1<a<1,故选:C.7.若圆与圆相交,则的取值范围是

(

)A.

B.

C.

D.或参考答案:D8.下列求导运算正确的是(

)A. B.C. D.参考答案:B【分析】利用导数运算公式,对每个选项进行一一判断.【详解】对A,因为,故A错;对B,,故B正确;对C,,故C错;对D,,故D错.所以本题选B.【点睛】熟记导数公式,特别是复合函数的求导,即,不能漏了前面的负号.9.锐角三角形的面积等于底乘高的一半;直角三角形的面积等于底乘高的一半;钝角三角形的面积等于底乘高的一半;所以,凡是三角形的面积都等于底乘高的一半.以上推理运用的推理规则是

()A.三段论推理B.假言推理

C.关系推理

D.完全归纳推理参考答案:D10.曲线在点处的切线的斜率为()参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设O是原点,向量对应的复数分别为那么,向量对应的复数是

.参考答案:12.已知a>0,函数f(x)=,若f(x)在区间(﹣a,2a)上单调递增,则实数a的取值范围是

.参考答案:(0,]

【考点】分段函数的应用.【分析】讨论f(x)在(﹣∞,1]递增,区间(﹣a,2a)?(﹣∞,1],求得f(x)的导数,令f′(x)≥0在区间(﹣a,2a)上恒成立,即有f′(﹣a)≥0且f′(2a)≥0;若f(x)在(﹣∞,+∞)递增,则f(x)在x>1递增,求得导数,令导数大于等于0,可得a的范围;注意﹣++a﹣≤(a﹣1)ln1+﹣a,解不等式求交集,即可得到所求范围.【解答】解:当x≤1时,f(x)=﹣x3+x2+ax﹣的导数为f′(x)=﹣x2+(1﹣a)x+a,若f(x)在区间(﹣a,2a)上单调递增,且2a≤1,则f′(x)≥0在区间(﹣a,2a)上恒成立,即有x2﹣(1﹣a)x﹣a≤0,可得(﹣a)2﹣(1﹣a)(﹣a)﹣a≤0,且(2a)2﹣2(1﹣a)a﹣a≤0,解得0<a≤;①若f(x)在(﹣∞,+∞)递增,即有f(x)在(1,+∞)递增,即有f(x)=(a﹣1)lnx+x2﹣ax的导数+x﹣a≥0在(1,+∞)恒成立.即有(x﹣1)(x﹣a+1)≥0在(1,+∞)恒成立.即有a﹣1≤1,即a≤2;②又﹣++a﹣≤(a﹣1)ln1+﹣a,解得a≤.③由①②③可得0<a≤.故答案为:(0,].【点评】本题考查分段函数的单调性的判断,考查导数的运用:求单调性,考查分类讨论思想方法,考查化简整理能力,属于中档题.13.下列四种说法:①命题“x∈R,使得x2+1>3x”的否定是“x∈R,都有x2+1≤3x”;②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;③在区间[-2,2]上任意取两个实数a,b,则关系x的二次方程x2+2ax-b2+1=0的两根都为实数的概率为;④过点(,1)且与函数y=图象相切的直线方程是4x+y-3=0.其中所有正确说法的序号是

。参考答案:①③14.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1,第二次取2个连续偶数2、4;第三次取3个连续奇数5、7、9;第四次取4个连续偶数10、12、14、16;第五次取5个连续奇数17、19、21、23、25.按此规则一直取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个子数列中,由1开始的第15个数是

,第2014个数是__________.参考答案:25,3965略15.从双曲线的左焦点F引圆的切线,切点为T,延长FT交双曲线右支于点P,若M为线段FP的中点,O为坐标原点,则的值为______.参考答案:216.直线与直线平行,则a的值是

.参考答案:或0

17.在△ABC中,D为BC边上一点,若△ABD是等边三角形,且AC=4,则△ADC的面积的最大值为.参考答案:【考点】正弦定理.【分析】先利用余弦定理求得建立等式,利用基本不等式的性质确定AD?DC的最大值,进而根据三角形面积公式求得三角形面积的最大值.【解答】解:在△ACD中,cos∠ADC===﹣,整理得AD2+CD2=48﹣AD?DC≥2?AD?DC,∴AD?DC≤16,AD=CD时取等号,∴△ADC的面积S=AD?DC?sin∠ADC=AD?DC≤4,故答案为:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数在处的切线方程为.(1)求函数的解析式;(2)若关于的方程恰有两个不同的实根,求实数的值;(3)数列满足,,求的整数部分. 参考答案:(1),

依题设,有,即,

解得

(2)方程,即,得,

记,则

令,得

当变化时,、的变化情况如下表:∴当时,F(x)取极小值;当时,F(x)取极大值

作出直线和函数的大致图象,可知当或时,它们有两个不同的交点,因此方程恰有两个不同的实根,

(3),得,又.,

由,得,

,即

即,故的整数部分为1.19.为了预防春季流感,市防疫部门提供了编号为1,2,3,4的四种疫苗供市民选择注射,每个人均能从中任选一个编号的疫苗接种,现有甲,乙,丙三人接种疫苗.(1)求三人注射的疫苗编号互不相同的概率;(2)设三人中选择的疫苗编号最大数为X,求X的分布列及数学期望.参考答案:(1);(2)见解析.【分析】(1)计算出总的基本事件个数和满足题意的基本事件个数,根据古典概型求得结果;(2)由题意知随机变量的可能取值,计算对应的概率值,写出分布列;根据数学期望公式求得期望.【详解】(1)由题意可知,总的基本事件个数为:三人注射的疫苗批号互不相同的基本事件个数为:所求的概率:(2)随机变量的可能取值为,,,;则;;;的分布列为1234

数学期望

20.已知函数f(x)=ex和函数g(x)=kx+m(k、m为实数,e为自然对数的底数,e≈2.71828).(1)求函数h(x)=f(x)﹣g(x)的单调区间;(2)当k=2,m=1时,判断方程f(x)=g(x)的实数根的个数并证明;(3)已知m≠1,不等式(m﹣1)[f(x)﹣g(x)]≤0对任意实数x恒成立,求km的最大值.参考答案:(1)求出h′(x)=ex﹣k,(x∈R),分以下两种情况讨论:①当k≤0,②当k>0,(2)当k=2,m=1时,方程f(x)=g(x)即为h(x)=ex﹣2x﹣1=0,结合(1)及图象即可判定.(3)设h(x)=f(x)﹣g(x),分①当m>1,②当m<1,分别求解解:(1)h′(x)=ex﹣k,(x∈R),①当k≤0时,h′(x)>0恒成立,h(x)的单调递增区间为(﹣∞,+∞),无单调递减区间;②当k>0时,由h′(x)>0得x>lnk,由h′(x)<0得x<lnk,故h(x)的单调递减区间为(﹣∞,lnk),单调递增区间为(lnk,+∞).(2)当k=2,m=1时,方程f(x)=g(x)即为h(x)=ex﹣2x﹣1=0,由(1)知h(x)在(﹣∞,ln2)上递减,而h(0)=0,故h(x)在(﹣∞,ln2)上有且仅有1个零点,由(1)知h(x)在[ln2,+∞)上递增,而h(1)=e﹣3<0,h(2)=e2﹣5>0,且h(x)的图象在[1,2]上是连续不间断的,故h(x)在[1,2]上有且仅有1个零点,所以h(x)在[ln2,+∞)上也有且仅有1个零点,综上,方程f(x)=g(x)有且仅有两个实数根.(3)设h(x)=f(x)﹣g(x),①当m>1时,f(x)﹣g(x)≤0恒成立,则h(x)≤0恒成立,而h(﹣)=e>0,与h(x)≤0恒成立矛盾,故m>1不合题意;②当m<1时,f(x)﹣g(x)≥0,恒成立,则h(x)≥0恒成立,1°当k=0时,由h(x)=ex﹣m≥0恒成立可得m∈(﹣∞,0],km=0;2°当k<0时,h()=e﹣1,而,故e<1,故h()<0,与h(x)≥0恒成立矛盾,故k<0不合题意;3°当k>0时,由(1)可知[h(x)]min=h(lnk)=k﹣klnk﹣m,而h(x)≥0恒成立,故k﹣klnk﹣m≥0,得m≤k﹣klnk,故km≤k(k﹣klnk),记φ(k)=k(k﹣klnk),(k>0),则φ′(k)=k(1﹣2lnk),由φ′(k)>0得0,由φ′(k)<0得k>,故φ(k)在(0,)上单调递增,在(,+∞)上单调递减,∴φ(k)max=φ()=,∴km≤,当且仅当k=,m=时取等号;综上①②两种情况得km的最大值为.21.(本小题满分12分)已知椭圆:,直线与椭圆交于两点,直线与椭圆交于两点,点坐标为,直线和斜率乘积为.(1)求椭圆离心率;(2)若弦的最小值为,求椭圆的方程.

参考答案:(1)设,由对称性得将代入椭圆得

------------2分又∴∴∴

---------------------5分(2)椭圆方程可化为联立得

---------------------------------7分设O为坐标原点,则同理可得∴

-------------------------------10分当且仅当即时取等号,此时∴∴椭圆方程为

--------------------------------12分22.(本题12分)

某学校举行知识竞赛,第一轮选拔共设有四个问题,规则如下:1

每位参加者记分器的初始分均为分,答对问题分别加分、分、分、分,答错任一题减分;2

每回答一题,记分器显示累计分数,当累计分数小于分时,答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论