版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省岳阳市平江县第十中学高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.任取,则使的概率是(
)A.
B.
C.
D.参考答案:B2.某商场出售一种商品,每天可卖1000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出100件,为获得最好的经济效益每件单价应降低(
)元.A.1.5元 B.2.5元 C.1元 D.2元参考答案:A3.设函数的定义域为,函数的定义域为N,则()A. B. C. D.参考答案:C4.有五条线段长度分别为,从这条线段中任取条,则所取条线段能构成一个三角形的概率为A.
B.
C.
D.参考答案:B5.判断下列各命题的真假:(1)向量的长度与向量的长度相等;(2)向量与向量平行,则与的方向相同或相反;(3)两个有共同起点的而且相等的向量,其终点必相同;(4)两个有共同终点的向量,一定是共线向量;(5)向量和向量是共线向量,则点A、B、C、D必在同一条直线上;(6)有向线段就是向量,向量就是有向线段.其中假命题的个数为()A、2个B、3个C、4个D、5个
参考答案:C6.若函数,则的值为()A. B. C. D.参考答案:D【考点】函数的值.【分析】根据分段函数的定义域与函数解析式的关系,代值进行计算即可.【解答】解:∵,∴=f()+1=f()+1.又∵,∴f()=f(+1)+1=f()+1.又∵∴f()=﹣cos=.所以:=.故选:D.7.已知函数f(x)=2sinx(>0)在区间[,]上的最小值是-2,则的最小值等于(
)A.
B.
C.2
D.3参考答案:A略8.若不等式对任意的恒成立,则的取值范围是(
)A.
B.
C.
D.参考答案:B9.已知,则之间的大小关系为(
)A.
B.
C.
D.
参考答案:B略10.△的面积为,边长,则边长为
A.5
B.6
C.7
D.8参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知数列满足,且,则
.参考答案:
略12.奇函数当时,,则当时,=_______.参考答案:略13.在△ABC中,已知,则b=_______.参考答案:3【分析】根据余弦定理求解.【详解】由余弦定理得:即解得或(舍去)【点睛】本题考查解三角形,正弦定理余弦定理是常用方法,注意增根的排除.14.过两点A(2,-1),B(3,1)的直线的斜率为
.参考答案:2由题意得,过点A,B的直线的斜率为.
15.关于下列命题:①若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};②若函数y=的定义域是{x|x>2},则它的值域是{y|y≤};③若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2};④若函数y=log2x的值域是{y|y≤3},则它的定义域是{x|0<x≤8}.其中不正确的命题的序号是.(注:把你认为不正确的命题的序号都填上)参考答案:①②③【考点】函数的定义域及其求法;函数的值域;指数函数的定义、解析式、定义域和值域;对数函数的值域与最值.【分析】根据①、②、③、④各个函数的定义域,求出各个函数的值域,判断正误即可.【解答】解:①中函数y=2x的定义域x≤0,值域y=2x∈(0,1];原解错误;②函数y=的定义域是{x|x>2},值域y=∈(0,);原解错误;③中函数y=x2的值域是{y|0≤y≤4},,y=x2的值域是{y|0≤y≤4},但它的定义域不一定是{x|﹣2≤x≤2};原解错误④中函数y=log2x的值域是{y|y≤3},y=log2x≤3,∴0<x≤8,故①②③错,④正确.故答案为:①②③16.在等比数列{an}中,若a1=,a4=-4,则|a1|+|a2|+…+|an|=________.参考答案:略17.下列各数、
、、中最小的数是____________参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)△ABC中,sin2A﹣(2+1)sinA+2=0,A是锐角,求cot2A的值.参考答案:19.某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x(万元)与销售收入y(万元)进行了统计,得到相应数据如下表:x(万元)91081112y(万元)2123212025(Ⅰ)求y关于x的线性回归方程;(Ⅱ)预测当广告投入为15万元时的销售收入.参考公式:,.参考答案:解:(Ⅰ),,所以;(Ⅱ).
20.若圆经过点(2,0),(0,4),(0,2)求:(1)圆的方程(2)圆的圆心和半径参考答案:(1);(2)圆心为(3,3),半径.试题分析:(1)已知圆上三点,设圆的一般方程:,将圆上三点代入,解得参数,即得圆的方程;(2)根据公式圆心坐标为,半径.试题解析:(1)设圆的一般式为将已知点代入方程得解得所以圆的方程为................................5分(2),所以圆心为(3,3)=
...............................................10分考点:圆的方程21.20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率分布直方图中a的值并估计数学考试成绩的平均分;(2)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图的性质能求出a和数学考试成绩的平均分.(2)由频率分布直方图得到成绩在[50,70)的学生人数为5人,其中成绩在[50,60)的学生人数为2人,成绩在[60,70)的学生人数为3人,由此利用等可能事件概率计算公式能求出这2人的成绩都在[60,70)中的概率.【解答】解:(1)由频率分布直方图得:(2a+3a+7a+6a+2a)×10=1,解得a=.数学考试成绩的平均分为:=55×+65×+75×+85×+95×=76.5.(2)成绩在[50,70)的学生人数为:20×5××10=5,其中成绩在[50,60)的学生人数为:20×2××10=2,成绩在[60,70)的学生人数为:20×3××10=3,∴从成绩在[50,70)的学生中人选2人,基本事件总数n==10,这2人的成绩都在[60,70)中的基本事件个数m==3,∴这2人的成绩都在[60,70)中的概率P=.22.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD中点,M是棱PC上的点,AD=2BC.(1)求证:平面POB⊥平面PAD;(2)若点M是棱PC的中点,求证:PA∥平面BMO.参考答案:【考点】直线与平面平行的判定;平面与平面垂直的判定.【专题】空间位置关系与距离.【分析】(1)由已知得四边形BCDO为平行四边形,OB⊥AD,从而BO⊥平面PAD,由此能证明平面POB⊥平面PAD.(2)连结AC,交BO于N,连结MN,由已知得MN∥PA,由此能证明PA∥平面BMO.【解答】(1)证明:∵AD∥BC,BC=AD,O为AD的中点,∴四边形BCDO为平行四边形,∴CD∥BO.
∵∠ADC=90°,∴∠AOB=90°
即OB⊥AD.又∵平面PAD⊥平面ABCD
且平面PAD∩平面ABCD=AD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论