第四紫外可见分光光法演示文稿_第1页
第四紫外可见分光光法演示文稿_第2页
第四紫外可见分光光法演示文稿_第3页
第四紫外可见分光光法演示文稿_第4页
第四紫外可见分光光法演示文稿_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四紫外可见分光光度法演示文稿2023/5/17目前一页\总数四十六页\编于十八点2023/5/17优选第四紫外可见分光光度法目前二页\总数四十六页\编于十八点第一节分子吸收光谱吸收光谱分析、发射光谱分析在光(或能量)作用下,通过测定物质产生(发射、吸收或散射)光的波长和强度来进行定性、定量分析的方法。内部能级变化.光谱分析法或光谱法分子光谱分析、原子光谱分析按电磁辐射的本质:按辐射能的传递方式:按波长不同分:红外、可见光、紫外光谱法等1.概述目前三页\总数四十六页\编于十八点按波长不同排列起来就形成电磁波谱。电磁波谱:紫外光区:远紫外区10-190nm(真空紫外区)近紫外区:190-400nm可见光区:400-800nm目前四页\总数四十六页\编于十八点光谱

●物质与辐射相互作用时,根据能级跃起迁所产生的辐射能强度随波长变化所得的图谱称光谱。光谱图目前五页\总数四十六页\编于十八点物质对光的选择性吸收●物质的颜色由物质与光的相互作用方式决定。●单色光:单一波长的光(由具有相同能量的光子组成)。●复合光:由不同波长的光组合而成的光,如白光。让白光通过棱镜,能色散出红、橙、黄、绿、蓝、紫等各色光。●光的互补:若两种不同颜色的单色光按一定比例混合得到白光,

称这两种单色光为互补色光,这种现象称为光的互补。目前六页\总数四十六页\编于十八点物质的颜色:是由于物质对不同波长的光具有选择性吸收而产生。

即物质的颜色是它所吸收光的互补色。无色溶液:透过所有颜色的光有色溶液:透过光的颜色黑色:吸收所有颜色的光白色:反射所有颜色的光物质的本色目前七页\总数四十六页\编于十八点完全吸收完全透过吸收黄光光谱示意表观现象示意复合光蓝光无色黑色物质的颜色与光的关系目前八页\总数四十六页\编于十八点2.紫外—可见分子吸收光谱与电子跃迁物质分子内部三种运动形式:

(1)电子相对于原子核的运动(2)原子核在其平衡位置附近的相对振动(3)分子本身绕其重心的转动分子具有三种不同能级:电子能级、振动能级和转动能级三种能级都是量子化的,且各自具有相应的能量分子的内能:电子能量Ee、振动能量Ev

、转动能量Er即E=Ee+Ev+ErΔΕe>ΔΕv>ΔΕr

目前九页\总数四十六页\编于十八点能级跃迁

紫外-可见光谱属于电子跃迁光谱。

电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。目前十页\总数四十六页\编于十八点讨论:(1)转动能级间的能量差ΔEr:0.005~0.050eV,跃迁产生吸收光谱位于远红外区。远红外光谱或分子转动光谱;(2)振动能级的能量差ΔEv约为:0.05~1eV,跃迁产生的吸收光谱位于红外区,红外光谱或分子振动光谱;(3)电子能级的能量差ΔEe较大,1~20eV。电子跃迁产生的吸收光谱在紫外—可见光区,紫外—可见光谱或分子的电子光谱。目前十一页\总数四十六页\编于十八点讨论:

(4)吸收光谱的波长分布是由产生谱带的跃迁能级间的能量差所决定,反映了分子内部能级分布状况,是物质定性的依据。(5)吸收谱带强度与分子偶极矩变化、跃迁几率有关,也提供分子结构的信息。通常将在最大吸收波长处测得的摩尔吸光系数εmax也作为定性的依据。不同物质的λmax有时可能相同,但εmax不一定相同;(6)吸收谱带强度与该物质分子吸收的光子数成正比,定量分析的依据。目前十二页\总数四十六页\编于十八点(一)有机物的电子跃迁有机化合物的紫外—可见吸收光谱,是其分子中外层价电子跃迁的结果(三种):σ电子、π电子、n电子(P 电子)。分子轨道理论:一个成键轨道必定有一个相应的反键轨道。通常外层电子均处于分子轨道的基态,即成键轨道或非键轨道上。外层电子吸收紫外或可见辐射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁所需能量ΔΕ大小顺序为:

n→π*<π→π*<n→σ*<σ→σ*

第二节紫外可见吸收光谱目前十三页\总数四十六页\编于十八点⑴σ→σ*跃迁

所需能量最大,σ电子只有吸收远紫外光的能量才能发生跃迁。饱和烷烃的分子吸收光谱出现在远紫外区(吸收波长λ<200nm,只能被真空紫外分光光度计检测到)。如甲烷的λ为125nm,乙烷λmax为135nm。⑵n→σ*跃迁

所需能量较大。吸收波长为150~250nm,大部分在远紫外区,近紫外区仍不易观察到。含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原子)均呈现n→σ*跃迁。如一氯甲烷、甲醇、三甲基胺n→σ*跃迁的λ分别为173nm、183nm和227nm。目前十四页\总数四十六页\编于十八点⑶π→π*跃迁

所需能量较小,吸收波长处于远紫外区的近紫外端或近紫外区,摩尔吸光系数εmax一般在104L·mol-1·cm-1以上,属于强吸收。不饱和烃、共轭烯烃和芳香烃类均可发生该类跃迁。如:乙烯π→π*跃迁的λ为162nm,εmax为:1×104L·mol-1·cm-1。⑷n→π*跃迁

需能量最低,吸收波长λ>200nm。这类跃迁在跃迁选律上属于禁阻跃迁,摩尔吸光系数一般为10~100L·mol-1·cm-1,吸收谱带强度较弱。含有杂原子不饱和基团如=C=O、=C=S、-N=N-等,分子中孤对电子和π键同时存在时发生n→π*

跃迁。丙酮n→π*跃迁的λ为275nmεmax为22L·mol-1·cm-1(溶剂环己烷)。目前十五页\总数四十六页\编于十八点生色团与助色团生色团:

最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生的。这两种跃迁均要求有机物分子中含有不饱和基团。这类含有π键的不饱和基团称为生色团。简单的生色团由双键或叁键体系组成,如乙烯基、羰基、亚硝基、偶氮基—N=N—、乙炔基、腈基—C≡N等。助色团:

有一些含有n电子的基团(如—OH、—OR、—NH2、—NHR、—X等),它们本身没有生色功能(不能吸收λ>200nm的光),但当它们与生色团相连时,就会发生n—π共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。目前十六页\总数四十六页\编于十八点红移与蓝移

有机化合物的吸收谱带常常因引入取代基或改变溶剂使最大吸收波长λmax和吸收强度发生变化:

λmax向长波方向移动称为红移,或长移。向短波方向移动称为蓝移(或紫移)或短移。吸收强度即摩尔吸光系数ε增大或减小的现象分别称为增色效应或减色效应,如图所示。强带(strongband):max>104弱带(weakband):max<103目前十七页\总数四十六页\编于十八点吸收带1.R带从德文Radikal(基团)得名为n→π*跃迁引起的吸收带。如羰基-CO-,-NO2、-CHO等,其特点为吸收强度弱,ε<100,吸收峰波长一般在270nm以上;2.K带从德文Konjugation(共轭作用)得名为π→π*跃迁引起的,如共轭双键。该吸收带的特点为吸收峰很强,ε>104,最大吸收峰位置一般在217~280nm。共轭双键增加,λmax向长波方向移动,εmax也随之增加;是指吸收峰在紫外-可见光谱中的波带位置。目前十八页\总数四十六页\编于十八点3.B带从德文Benzenoid(苯的)得名为芳香化合物(包括杂环芳香化合物)的特征吸收带。这是由于π→π*跃迁和苯环的振动重叠引起的。苯蒸气在230~270nm处出现精细结构的吸收光谱,称为笨的多重吸收带或精细结构吸收带。在极性溶剂中或苯环上有取代基时,复杂的B吸收带简化,精细结构消失,出现一宽峰,中心在256nm,ε=220。是由苯环结构中三个乙烯的环状共轭系统的跃迁所产生的。分为E1和E2吸收带,其中E1在185nm附近,ε=47000,E2在204nm,ε=7900,均为强吸收。4.E带

目前十九页\总数四十六页\编于十八点(二)金属配合物的紫外—可见吸收光谱

金属离子与配位体反应生成配合物的颜色一般不同于游离金属离子(水合离子)和配位体本身的颜色。金属配合物的生色机理主要有三种类型:⑴配位体微扰的金属离子d一d电子跃迁和f一f电子跃迁

摩尔吸收系数ε很小,对定量分析意义不大。⑵金属离子微扰的配位体内电子跃迁

金属离子的微扰,将引起配位体吸收波长和强度的变化。变化与成键性质有关,若静电引力结合,变化一般很小。若共价键和配位键结合,则变化非常明显。⑶电荷转移吸收光谱在分光光度法中具有重要意义。目前二十页\总数四十六页\编于十八点电荷转移吸收光谱

当吸收紫外可见辐射后,分子中原定域在金属M轨道上电荷的转移到配位体L的轨道,或按相反方向转移,这种跃迁称为电荷转移跃迁,所产生的吸收光谱称为荷移光谱。

电荷转移跃迁本质上属于分子内氧化还原反应,因此呈现荷移光谱的必要条件是构成分子的二组分,一个为电子给予体,另一个应为电子接受体。电荷转移跃迁在跃迁选律上属于允许跃迁,其摩尔吸光系数一般都较大(104左右),适宜于微量金属的检出和测定。

电荷转移跃迁在紫外区或可见光呈现荷移光谱,荷移光谱的最大吸收波长及吸收强度与电荷转移的难易程度有关。

例:Fe3+与SCN-形成血红色配合物,在490nm处有强吸收峰。其实质是发生了如下反应:

[Fe3+SCN-

]

+hν=[FeSCN]2+

目前二十一页\总数四十六页\编于十八点基于物质吸收紫外或可见光引起分子中价电子跃迁、产生分子吸收光谱与物质组分之间的关系建立起来的分析方法,称为紫外可见分光光度法(UV-vis)。紫外-可见分光光度法特点:(1)灵敏度高,可测到10-7g/ml。(2)准确度好,相对误差为1%-5%,满足微量组分测定要求。(3)选择性好,多种组分共存,无需分离直接测定某物质。(4)操作简便、快速、选择性好、仪器设备简单、便宜。(5)应用广泛,无机、有机物均可测定。第三节紫外-可见分光光度法的基本原理目前二十二页\总数四十六页\编于十八点一、透光率(透光度)和吸收度①透光率T定义:T取值为0.0%~100.0%T=0.0%:光全吸收T=100.0%:光全透过②吸光度(吸收度)AT=ItI0×100%显然,T↑,溶液吸收度↓;T↓,溶液吸收度↑。即透光率T反映溶液对光吸收程度,通常用1/T反映吸光度。定义:A=lg1T=-lgT=lgI0ItA=-lgT,T=10-AtI0=It+Ia+Ir吸收光反射光透过光Ia③T与A关系:IrA∝1/T,T=0,A=∞,T=100%,A=0目前二十三页\总数四十六页\编于十八点二、光的吸收定律朗伯(Lambert)和比尔(Beer)分别于1760年和1852年研究吸光度A与溶液厚度L和其浓度C的定量关系:朗伯定律:A=k1×L比尔定律:A=k1×CA=kCL一束平行单色光通过一均匀、非散射的吸光物质溶液时,在入射光的波长、强度以及溶液温度等保持不变时,该溶液的吸光度A与其浓度C及液层厚度L的乘积成正比。①入射光为单色光,适用于可见、红外、紫外光。②均匀、无散射溶液、固体、气体。③吸光度A具有加和性。Aa+b+c=Aa+Ab+Ac注意!适用范围朗伯-比尔定律:A=-lgT,T=10-A=10-kcL吸光系数浓度液层厚度目前二十四页\总数四十六页\编于十八点三、吸光系数1、摩尔吸光系数或Em:

在一定λ下,c=1mol/L,L=1cm时的吸光度。单位:L/(mol.cm)(1)一定条件下是一个特征常数。(2)在温度和波长等条件一定时,ε仅与物质本身的性质有关,与待测物浓度c和液层厚度L无关;(3)定性和定量分析依据:同一物质在不同波长时ε值不同。不同物质在同一波长时ε值不同。εmax表明了该物质在最大吸收波长λmax处的最大吸光能力。

4、吸光系数的意义:2、百分吸光系数/比吸光系数:3、两者关系:A=kcLk=A/cL

一定λ下,c=1%(W/V),L=1cm时的吸光度。单位:100ml/g.cm1g/100ml目前二十五页\总数四十六页\编于十八点1.定义:以A为纵坐标,λ为横坐标,绘制的λ~A曲线。四、吸收光谱(吸收曲线)2.吸收光谱术语:①吸收峰→λmax,②吸收谷→λmin③肩峰→λsh,④末端吸收⑤强带:

max>104,弱带:

max<103特征值目前二十六页\总数四十六页\编于十八点●同一物质的吸收光谱特征值相同,(每一波长处吸光系数相同)。同一物质相同浓度的吸收曲线重合。●同一物质不同浓度,其吸收曲线形状相似,λmax相同。(定量)●不同物质相同浓度,其吸收曲线形状,λmax不同。(定性)定性、定量分析:在吸收曲线λmax处测吸光度A。目前二十七页\总数四十六页\编于十八点0.575第四节紫外-可见分光光度计依据朗伯-比尔定律,测定待测液吸光度A的仪器。(选择不同波长单色光λ、浓度)光源单色器吸收池检测器信号处理及显示目前二十八页\总数四十六页\编于十八点分光光度计外观光源单色器吸收池检测器信号处理显示器721型可见分光光度计目前二十九页\总数四十六页\编于十八点754c可见分光光度计使用目前三十页\总数四十六页\编于十八点一、主要部件1.光源:2.单色器:包括狭缝、准直镜、色散元件钨灯或卤钨灯氢灯或氘灯—可见光源350~1000nm—紫外光源200~360nm色散元件棱镜光栅对不同波长的光折射率不同衍射和干涉,不同波长的投射方向不同玻璃棱镜:适用于可见区石英棱镜:适用于紫外区高度抛光的玻璃上刻有等宽、等距平行条痕狭缝:进出光狭缝。准直镜:复合光→平行光→色散后→聚集狭缝最佳宽度:减小狭缝宽度而溶液吸光度不变。3.吸收池:比色皿、比色杯,装样品溶液。有玻璃、石英杯两种4.检测器:光→电,光电池(硒,硅),光电管(红,紫),光电倍增管。5.信号处理显示器:放大较弱的电信号,并在检流计上显示出来。目前三十一页\总数四十六页\编于十八点光源氘灯—紫外卤钨灯--可见目前三十二页\总数四十六页\编于十八点单色器光路图目前三十三页\总数四十六页\编于十八点吸收池光比色槽比色杯目前三十四页\总数四十六页\编于十八点检测器利用光电效应将透过吸收池的光信号变成可测的电信号,常用的有光电池、光电管、光电倍增管或光二极管阵列。目前三十五页\总数四十六页\编于十八点二、光学性能1.波长范围:2.波长准确度:一般误差为±0.5nm—可见光400~1000nm—紫外-可见光190~360nm3.波长重现性:波长准确度的1/2左右。4.狭缝和谱带宽:单色光纯度指标。最小谱带宽度可达0.1~0.5nm5.分辨率:数值越小越好。中等仪器≤0.5nm,高级仪器≤0.1nm6.杂散光:所含杂散光强度百分比作指标。中等仪器≤0.5%,

高级仪器≤0.001%7.透光率测量范围:中档仪器为0%~150%8.吸光度测量范围:中档仪器为-0.1730~+2.009.测光准确度:中档仪器误差为±0.5%10.测光重现性:测光准确度误差范围的1/2左右。目前三十六页\总数四十六页\编于十八点三、分析条件的选择(一)

测量条件的选择

1.吸光度的范围:T∈20%~65%,A∈0.2~0.7之间吸收最大的波长为入射光,干扰最小(二)显色反应条件的选择

显色反应:将试样组分转变成有较强吸收的有色化合物的反应。显色剂:与被测组分化合生成有色物质的试剂。1.显色反应的条件:(1)定量反应、选择性要好;干扰少。(2)灵敏度要高,摩尔吸光系数ε大。

(3)有色化合物的组成要恒定,化学性质要稳定。(4)有色化合物与显色剂的最大吸收波长之差≥60nm。(5)显色反应的条件要易于控制。2.测定波长的选择:M十R=MR

(被测物)(显色剂)(有色配合物)目前三十七页\总数四十六页\编于十八点2.溶液酸度3.显色温度及显色时间T1(℃)T2(℃)t(min)A用量通过实验来确定只能用于定性1.显色剂用量:目前三十八页\总数四十六页\编于十八点(三)参比溶液(空白溶液)的选择用于调节100%T,若选择不适当,对测量读数的影响较大。主要是消除溶液中其他组分对光的吸收等带来的影响。1.溶剂参比液当试液、试剂、显色剂均无色时,用溶剂(通常是蒸馏水)作参比液;3.试剂参比液如果显色剂或其他试剂略有吸收,可用不含待测组分的试剂溶液作参比溶液。2.试样参比液如果试样中的其他组分也有吸收,但不与显色剂反应,则当显色剂无吸收时,可用试样溶液作参比溶液。4.平等操作参比液用不含待测组分的溶液,在相同条件下与待测试样同时进行处理,此为平行操作参比溶液。目前三十九页\总数四十六页\编于十八点第五节定性与定量分析紫外-可见分光光度法主要用于有机物分析。定性分析:比较吸收光谱特征可以对纯物质进行鉴定及杂质检查;定量分析:利用光吸收定律进行分析(一)定性鉴别:一、定性分析对比法:比较样品化合物的吸收光谱特征与标准化合物的吸收光谱特征;或与文献所载的化合物的标准谱图进行核对。同一物质有相同吸收光谱图,反之不一定是同一物质。目前四十页\总数四十六页\编于十八点2、对比吸光度(或吸光系数)相同条件下,同一物质吸光度比值是吸光系数的比值。(二)纯度检查1、杂质检查:有杂质时,吸收光谱变形。2、杂质限量检查:①以某一波长吸光度值表示;②以峰谷吸光度比值表示。3、对比吸收光谱的一致性将试样与已知标准样品用同一溶剂配制成相同浓度的溶液,在同一条件下分别扫描吸收光谱,核对其一致性。1、对比吸收光谱特征数据:λmax、λmin、λsh①不同基团化合物可能有相同的λmax值,但εmax有明显差别;②有相同吸光基团同系物,其λmax、εmax值接近,但分子量不同,E1%1cm差别大。A1/A2=E1/E2目前四十一页\总数四十六页\编于十八点

了解共轭程度、空间效应、氢键等;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论