圆幂定理及其证明_第1页
圆幂定理及其证明_第2页
圆幂定理及其证明_第3页
圆幂定理及其证明_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆幂定理及其证明圆幂定理及其证明/NUMPAGES4圆幂定理及其证明圆幂定理及其证明圆幂定理圆幂的定义:一点P对半径R的圆O的幂定义如下:所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,则∠D=∠B,∠A=∠C。所以△APD∽△BPC。所以切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。如图,PT为圆切线,PAB为割线。连接TA,TB,则∠PTA=∠B(弦切角等于同弧圆周角)所以△PTA∽△PBT,所以这个证明就比较简单了。可以过P做圆的切线,也可以连接CB和AD。证相似。存在:进一步升华(推论):过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则(一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)若点P在圆内,类似可得定值为故平面上任意一点对于圆的幂为这个点到圆心

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论