人工智能之不确定知识表示及推理_第1页
人工智能之不确定知识表示及推理_第2页
人工智能之不确定知识表示及推理_第3页
人工智能之不确定知识表示及推理_第4页
人工智能之不确定知识表示及推理_第5页
已阅读5页,还剩88页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章不确定知识表示及推理5/15/20231第一页,共九十三页。内容1.1概述1.2概率模型1.3主观Bayes方法1.4可信度方法5/15/20232第二页,共九十三页。1.1概述5/15/20233第三页,共九十三页。所谓不确定性推理就是从不确定性的初始事实(证据)出发,通过运用不确定的知识,最终推出具有一定程度的不确定性却是合理或者近乎合理的结论的思维过程。需要解决的问题:不确定性的表示不确定性的匹配不确定性的更新算法5/15/20234第四页,共九十三页。证据的不确定性一、不确定性的表示证据通常有两类:一类为初始事实。这一类证据多来源于观察,因而通常具有不确定性;另一类为推理过程中产生的中间结果。证据不确定性用C(E)表示,它代表相应证据的不确定性程度,即表示证据E为真的程度。如果E为初始事实,则C(E)由用户给出。如果E为推理过程中产生的中间结果,则C(E)可以通过不确定性的更新算法来计算。知识的不确定性5/15/20235第五页,共九十三页。规则:IFETHENH规则是知识,E是规则的前提即证据,H是该规则的结论,也可以是其他规则的证据。EHC(E)C(H)f(E,H)规则的不确定性通常用一个数值f(E,H)表示,称为规则强度。规则的假设(结论)H也可以作为其他规则的证据,其不确定用C(H)表示,C(H)必须通过不确定性的更新算法来计算。5/15/20236第六页,共九十三页。在确定一种量度方法及其范围时,应注意以下几点:量度要能充分表达相应的知识和证据的不确定性程度。量度范围的指定应便于领域专家及用户对不确定性的估计。量度要便于对不确定性的更新进行计算,而且对结论算出的不确定性量度不能超出量度的范围量度的确定应当是直观的,同时应有相应的理论依据。5/15/20237第七页,共九十三页。二、不确定性的匹配算法设计一个数用来计算匹配双方相似的程度,另外再指定一个相似的限度(称为阈值),用来衡量匹配双方相似的程度是否落在指定的限度内。如果落在指定的限度内,就称它们是可匹配的,相应的知识可被应用。否则就称它们是不可匹配的,相应的知识不可应用。5/15/20238第八页,共九十三页。三、不确定性的更新算法即在推理过程中如何考虑知识不确定性的动态积累和传递。1、已知规则前提的不确定性C(E)和规则的强度f(E,H),如何求假设H的不确定性C(H)。即定义算法g1,使C(H)=g1[C(E),f(E,H)]E1HC(E1)C(H)f(E1,H)E2HC(E2)C(H)f(E2,H)2、并行规则算法定义算法g2:C(H)=g2[C1(H),C2(H)]5/15/20239第九页,共九十三页。3、证据合取的不确定性算法C(E1

E2)=g3[C(E1),C(E2)]C(E1E2)=g4[C(E1),C(E2)]4、证据析取的不确定性算法合取和析取的不确定性算法统称为组合证据的不确定性算法。最大最小法C(E1E2)=min{C(E1),C(E2)}C(E1E2)=max{C(E1),C(E2)}C(EE2)=C(E1)C(E2)C(EE2)=C(E1)+C(E2)-C(E1)C(E2)有界方法概率方法C(E1E2)=max{0,C(E1)+C(E2)-1}C(E1E2)=min{1,C(E1)+C(E2)}5/15/202310第十页,共九十三页。设A1、A2、A3、A4为原始证据,不确定性分别为:C(A1)、C(A2)、C(A3)、C(A4)求A5、A6、A7的不确定性。举例A1A2ORA4A3ANDA5R1f1A6R2f2A7R3f3R4f45/15/202311第十一页,共九十三页。①由证据A1和A2的不确定性C(A1)和C(A2)②由A1和A2析取的不确定性C(A1A2)和规则R1的规则强度f1根据算法4求出A1和A2析取的不确定性C(A1A2)。根据算法1求出A5的不确定性C(A5)。③由证据A3和A4的不确定性C(A3)和C(A4)④由A3和A4合取的不确定性C(A3

A4)和规则R2的规则强度f2,根据算法3求出A3和A4合取的不确定性C(A3

A4)。根据算法1求出A6的不确定性C(A6)。5/15/202312第十二页,共九十三页。⑤由A5的不确定性C(A5)和规则R3的规则强度f3⑥由A6的不确定性C(A6)和规则R4的规则强度f4⑦由A7的两个根据独立证据分别求出的不确定性C(A7)和C(A7)根据算法1求出A7的其中一个不确定性C(A7)。根据算法1求出A7的另外一个不确定性C(A7)。根据算法2求成A7最后的不确定性C(A7)。5/15/202313第十三页,共九十三页。1.2

概率方法5/15/202314第十四页,共九十三页。一、基础1、全概率公式②P(Ai)>0;①两两互不相容,即当ij时,有设事件满足:③,D为必然事件则对任何事件B有下式成立:提供了一种计算P(B)的方法。5/15/202315第十五页,共九十三页。2、Bayes公式定理:设事件满足上述定理的条件,则对任何事件B有:该定理称为Bayes定理,上式称为Bayes公式。5/15/202316第十六页,共九十三页。如果把全概率公式代入Bayes公式中,就可得到:即:5/15/202317第十七页,共九十三页。二、概率推理模型Bayes方法用于不精确推理的条件是已知:P(E),P(H),P(E|H)IFETHENH①若一组证据E1,E2,En同时支持假设H时,则:对于H,E1,E2,En之间相互独立对于一般的不精确推理网络,必须做如下约定:②当一个证据E支持多个假设H1,H2,Hn时,则:假设H1,H2,Hn之间互不相容5/15/202318第十八页,共九十三页。如果一个证据E支持多个假设H1,H2,Hn,即:IFETHENHi并已知P(Hi)和P(E|Hi),则如果有多个证据E1,E2,Em和多个结论H1,H2,Hn,则:5/15/202319第十九页,共九十三页。设已知:P(H1)=0.4,P(H2)=0.3,P(H3)=0.3P(E1|H1)=0.5,P(E1|H2)=0.6,P(E1|H3)=0.3P(E2|H1)=0.7,P(E2|H2)=0.9,P(E2|H3)=0.1=0.45同理求:P(H1|E1E2),P(H2|E1E2),P(H3|E1E2)举例5/15/202320第二十页,共九十三页。概率推理模型的优缺点有较强的理论背景和良好的数学特征,当证据及结论都彼此独立时,计算的复杂度比较低。它要求给出结论Hi的先验概率P(Hi)及证据Ej的条件概率P(Ej|Hi),要获得这些数据是一件相当困难的工作。Bayes公式的应用条件很严格,它要求各事件互相独立,若证据之间存在依赖关系,就不能直接使用这个方法5/15/202321第二十一页,共九十三页。1.3主观Bayes方法5/15/202322第二十二页,共九十三页。EHP(E)P(H)LS,LNLS,LN(0)分别称为充分性量度和必要性量度,这两个数值由领域专家给出。一、不确定性的表示1、知识的不确定性表示IFETHEN(LS,LN)H(P(H))5/15/202323第二十三页,共九十三页。O等价于概率函数P,定义如下:P越大则O越大,P和O在概率含义上等价的,但取值范围不同:当P<0.5时,O<1P[0,1],O[0,)当P>0.5时,O>1当P=0.5时,O=1当P=0时,O=0几率函数O(odds)5/15/202324第二十四页,共九十三页。H的先验几率O(H)和后验几率O(H|E)5/15/202325第二十五页,共九十三页。同理可得:O(H|E)=LNO(H)O(H|E)=LSO(H)5/15/202326第二十六页,共九十三页。①LS:规则的充分性量度LS=1时,O(H|E)=O(H),说明E对H没有影响;LS>1时,O(H|E)>O(H),说明E支持H,且LS越大,E对H的支持越充分。可见,E的出现对H为真是充分的,故称LS为充分性度量。LS<1时,O(H|E)<O(H),说明E排斥H。若LS为,则E为真时H就为真;若LS为0时,则E为真时H就为假;当证据E越是支持H为真是,则使相应LS的值越大。反映E出现对H的支持程度。5/15/202327第二十七页,共九十三页。②LN:规则的必要性量度LN=1时,O(H|E)=O(H),说明E对H没有影响;LN>1时,O(H|E)>O(H),说明E支持H,且LN越大,E对H的支持越充分。当LN<1时,O(H|E)<O(H),说明E排斥H。若LN为,则E为真时H就为真;若LN为0时,则E为真时H就为假;由于E不出现,将导致H为假,可看出E对H为真的必要性,故称LN为必要性度量。若证据E对H越是必要,则相应的LN的值越小。反映E不出现对H的支持程度,即E的出现对H的必要性。5/15/202328第二十八页,共九十三页。③LS和LN的关系LS>1且LN<1LS<1且LN>1LS=LN=1由于E和E不可能同时支持H或同时反对H,所以领域专家在为一条知识中的LS和LN赋值时,不应该同时大于1或同时小于1。5/15/202329第二十九页,共九十三页。2、证据的不确定性表示在主观Bayes方法中,证据E的不确定性由用户根据观察S给出后验概率P(E|S)或后验几率O(E|S)表示。当E为真时,P(E|S)=1,O(E|S)=当E为假时,P(E|S)=0,O(E|S)=0当E不确定时,0<P(E|S)<15/15/202330第三十页,共九十三页。二、主观Bayes方法推理的基本算法P(H)P(H|E)P(H|E)P(E|S)LS,LN根据证据E的后验概率P(E|S)及LS,LN的值,把H的先验概率P(H)更新为后验概率P(H|E)或P(H|E)。即:5/15/202331第三十一页,共九十三页。当P(E|S)=11、证据E确定则:O(H|E)=LSO(H)5/15/202332第三十二页,共九十三页。当P(E|S)=1则:O(H|E)=LNO(H),同理可得:5/15/202333第三十三页,共九十三页。在证据不确定的情况下,不能再用上面的公式计算后验概率,而要用杜达(R.O.DUDA)等人于1976年证明了的如下公式:2、证据E不确定当P(E|S)=1时,P(E|S)=0P(H|S)=P(H|E)当P(E|S)=0时,P(E|S)=1P(H|S)=P(H|E)当P(E|S)=P(E)时:P(H|S)=P(H|E)P(E)+P(H|E)P(E)=P(H)当P(E|S)为其它值时,通过分段线性插值可得计算P(H|S)的公式,如图所示。P(H|S)=P(H|E)P(E|S)+P(H|E)P(E|S)此即为证据确实存在的情况此即为证据确实不存在的情况5/15/202334第三十四页,共九十三页。P(E|S)P(H|S)0P(H|E)P(H)P(E)P(H|E)15/15/202335第三十五页,共九十三页。函数的解析式,即EH公式P(H|E)、P(H|E)、P(H):根据专家给出的参数可计算出来EH公式中,有两组参数需要确认:P(E|S):由用户根据观察S给出P(E|S)相当困难,所以引入可信度的概念采用-55这11个整数作为证据的可信度,用户根据实际情况选择。5/15/202336第三十六页,共九十三页。C(E|S)=5,表示在观察S之下证据E肯定存在,即P(E|S)=1。可信度C(E|S)和概率P(E|S)的对应关系C(E|S)=-5,表示在观察S之下证据E肯定不存在,即P(E|S)=0。C(E|S)=0,表示S与E无关系,即P(E|S)=P(E)。C(E|S)为其他数时与P(E|S)的对应关系,可通过对上述3点进行分段线性插值得到,如图所示。5/15/202337第三十七页,共九十三页。C(E|S)P(E|S)012345-1-2-3-4-51P(E)5/15/202338第三十八页,共九十三页。C(E|S)与P(E|S)的关系式CP公式5/15/202339第三十九页,共九十三页。当用初始证据进行推理时,通过提问用户得到C(E|S),通过运用CP公式就可求出P(H|S)当用推理过程中得到的中间结论作为证据进行推理时,通过运用EH公式就可求得P(H|S)具体思路5/15/202340第四十页,共九十三页。3、证据E为若干证据的组合①独立证据导出同一假设当有n个证据Ei(i=1,2,,n)对假设H都有某种程度的影响时,即存在规则E1H,E2H,,EnH,Ei之间相互独立,且对每个Ei都有相应的观察Si与之对应。求在所有观测之下的后验概率:P(H|S1&S2&&Sn)5/15/202341第四十一页,共九十三页。合成法O(H|S1&S2&&Sn)=只要对每条规则分别求出O(H|Si),则这些独立证据的组合所得到的H的后验几率。5/15/202342第四十二页,共九十三页。结论更新算法先利用第一条规则对结论的先验概率进行更新,再把得到的后验概率当作第二条规则的先验概率;再用第二条知识对其进行更新,把更新后的值作为第三条知识的先验概率;继续更新到所有的规则都使用完。5/15/202343第四十三页,共九十三页。②证据的合取E=E1E2En如果在观察S下,其概率为:P(E1|S),P(E2|S),,P(En|S)则:P(E|S)=min{P(E1|S),P(E2|S),,P(En|S)}5/15/202344第四十四页,共九十三页。③证据的析取E=E1E2En如果在观察S下,证据其概率为:P(E1|S),P(E2|S),,P(En|S)则:P(E|S)=max{P(E1|S),P(E2|S),,P(En|S)}5/15/202345第四十五页,共九十三页。设有如下知识:三、主观Bayes方法应用举例已知:结论B的先验概率P(B)=0.03。当证据A1,A2,A3,A4必然发生后,求结论B的概率变化。R1:IFA1THEN(20,1)BR2:IFA2THEN(300,1)BR3:IFA3THEN(75,1)BR4:IFA4THEN(4,1)B5/15/202346第四十六页,共九十三页。A1A2A3A4BS1S2S3S4201300175141解法1:利用合成算法5/15/202347第四十七页,共九十三页。依据规则R1:依据规则R2:依据规则R3:5/15/202348第四十八页,共九十三页。依据规则R4:5/15/202349第四十九页,共九十三页。解法2:利用更新算法5/15/202350第五十页,共九十三页。R1:IFE1THEN(2,0.001)H1设有如下规则:R3:IFH1THEN(65,0.01)H2R2:IFE2THEN(100,0.001)H1R4:IFE3THEN(300,0.01)H2且已知先验几率:O(H1)=0.1,O(H2)=0.01通过提问用户得到:C(E1|S1)=3,C(E2|S2)=1,C(E3|S3)=-2求:O(H2|S1S2S3)。举例5/15/202351第五十一页,共九十三页。20.0011000.001650.013000.01E1E2S1S3H1E3H2S2C(E1|S1)=3C(E2|S2)=1C(E3|S3)=-25/15/202352第五十二页,共九十三页。①求O(H1|S1)因为C(E1|S1)=3>0,所以使用CP公式的后一部分:5/15/202353第五十三页,共九十三页。②求O(H1|S2)因为C(E2|S2)=1>0,所以使用CP公式的后一部分:5/15/202354第五十四页,共九十三页。③求O(H1|S1S2)5/15/202355第五十五页,共九十三页。④求O(H2|S1S2)为了确定应用EH公式的哪一部分,需要判断P(H1|S1S2)与P(H1)的关系。P(H1|S1S2)>P(H1),必须用EH公式的后半部分:5/15/202356第五十六页,共九十三页。5/15/202357第五十七页,共九十三页。⑤求O(H2|S3)因为C(E3|S3)=-2<0,所以使用CP公式的前一部分:5/15/202358第五十八页,共九十三页。⑥求O(H2|S1S2S3)可以看出,H2先验的几率为0.01,经过推理后,算出其后验几率为0.081,相当于几率增加了8倍。5/15/202359第五十九页,共九十三页。四、主观Bayes方法的主要优缺点优点:①主观Bayes方法中的计算公式大多是在概率论的基础上推导出来的,具有较坚实的理论基础。②规则的LS和LN由领域专家根据实践经验给出的,这就避免了大量的数据统计工作。另外,它既用LS指出了证据E对结论H的支持程度,又用LN指出了E对H的必要性程度,这就比较全面地反映了证据与结论间的因果关系,符合现实世界中某些领域的实际情况,使推出的结论具有较准确的确定性。5/15/202360第六十页,共九十三页。它的主要缺点有:①要求领域专家在给出规则的同时,给出H的先验概率P(H),这是比较困难的。②Bayes定理中关于事件间独立性的要求使主观Bayes方法的应用受到了限制。由其推理过程可以看出,它确实实现了不确定性的逐级传递。因此可以说主观Bayes方法是一种比较全面实用且灵活的不确定性推理方法。③主观Bayes方法不仅给出了在证据确定的情况下由H的先验概率更新为后验概率的方法,而且给出了在证据不确定情况下更新先验概率为后验概率的方法。5/15/202361第六十一页,共九十三页。练习:1、设有如下知识:R1:IFE1THEN(1,0.003)H1(0.4)R2:IFE2THEN(18,1)H2(0.06)R3:IFE3THEN(12,1)H3(0.04)求:当证据E1,E2,E3出现及不出现时,P(Hi/Ei)及P(Hi/Ei)的值各是多少?2、设有如下知识:R1:IFATHEN(20,1)B1(0.03)R2:IFB1THEN(300,0.0001)B2(0.01)当证据A必然发生时,求P(B2/A)。5/15/202362第六十二页,共九十三页。3、设有如下知识:R1:IFE1THEN(20,1)H(0.03)R2:IFE2THEN(300,1)H(0.03)若证据E1和E2依次出现,按主观Bayes推理,求H在此条件下的概率P(H/E1E2)。(按两种方法求)5/15/202363第六十三页,共九十三页。1.4可信度方法5/15/202364第六十四页,共九十三页。一、基于可信度的不确定的表示根据经验对一个事物或现象为真的相信程度称为可信度。知识用产生式规则表示,每一条规则都有一个可信度;每个证据也具有一个可信度。5/15/202365第六十五页,共九十三页。1、知识不确定性的表示IFETHENH(CF(H,E))CF(H,E)是该规则的可信度,称为可信度因子或规则强度CF(H,E)[-1,1],表示在已知证据E的情况下对假设H为真的支持程度。CF(H,E)>0,表示证据的存在增加结论为真的程度,CF(H,E)的值越大结论H越真;CF(H,E)=1,表示证据存在结论为真;CF(H,E)<0,表示证据的存在增加结论为假的程度CF(H,E)的值越小结论H越假;CF(H,E)=-1,表示证据存在结论为假;CF(H,E)=0,表示证据E和结论H没有关系。5/15/202366第六十六页,共九十三页。如果P(H|E)=1,CF(H,E)=1如果P(H|E)=0,CF(H,E)=-1如果P(H|E)=P(H),CF(H,E)=0①可信度的性质5/15/202367第六十七页,共九十三页。②对同一个证据E,若有n个互不相容的假设Hi(i=1,2,,n),则如果发现专家给出的可信度出现CF(H1,E)=0.6,CF(H2,E)=0.7,而H1和H2互不相容,说明规则的可信度是不合理的,应调整。5/15/202368第六十八页,共九十三页。③可信度CF和概率P有一定的对应关系,但又有区别。P(H|E)+P(H|E)=1CF(H|E)+CF(H|E)=0表明,一个证据对某个假设的成立有利,必然对该假设的不成立不利,而且对两者的影响程度相同。5/15/202369第六十九页,共九十三页。根据定义式,由先验概率P(H)和后验概率P(H|E)可求CF(H,E)。但是实际应用中,P(H)和P(H|E)的值是难以获得的,因此CF(H,E)的值要求由领域专家直接给出,其原则是:若由于证据的出现增加结论H为真的可信度,则使:CF(H,E)>0证据的出现越是支持H为真,就使CF(H,E)的值越大;反之,使:CF(H,E)<0证据的出现越是支持H为假,就使CF(H,E)的值越小;若证据的出现与H无关,使:CF(H,E)=0可信度的确定5/15/202370第七十页,共九十三页。2、证据的不确定性的表示证据E的不确定性用证据的可信度CF(E)表示。原始证据的可信度由用户在系统运行时提供;中间结果的可信度由不精确推理算法得到。证据E的可信度取值范围为:-1CF(E)1当证据以某种程度为真时:CF(E)>0当证据肯定为真时:CF(E)=1当证据以某种程度为假时:CF(E)<0当证据肯定为假时:CF(E)=-1当证据一无所知时:CF(E)=05/15/202371第七十一页,共九十三页。①证据的合取E=E1E2EnCF(E)=min{CF(E1),CF(E2,,CF(En)}二、可信度方法推理的基本算法1、组合证据的不确定性算法②证据的析取E=E1E2EnCF(E)=max{CF(E1),CF(E2,,CF(En)}5/15/202372第七十二页,共九十三页。2、不确定性的传递算法不确定性的传递算法就是根据证据和规则的可信度求结论的可信度。已知规则如下:IFETHENH(CF(H,E))并已知证据E的可信度为CF(E),则结论H的可信度CF(H)为:CF(H)=CF(H,E)max{0,CF(E)}若CF(E)>0,即证据以某种程度为真,则CF(H)=CF(H,E)CF(E)若CF(E)=1,即证据为真时,则CF(H)=CF(H,E);若CF(E)<0,即证据以某种程度为假,则CF(H)=0;在可信度方法的不精确推理中,并没有考虑证据为假时对结论H所产生的影响。5/15/202373第七十三页,共九十三页。IFE1THENH(CF(H,E1))IFE2THENH(CF(H,E2))3、多个独立证据推出同一假设的合成算法①先分别求两条规则得出的结论的可信度。CF1(H)=CF(H,E1)max{0,CF(E1)}CF2(H)=CF(H,E2)max{0,CF(E2)}②利用下式求出E1和E2对H的综合影响所形成的CF1,2(H)。CF1(H)0,CF2(H)0:CF1,2(H)=CF1(H)+CF2(H)-CF1(H)CF2(H)CF1(H)<0,CF2(H)<0:CF1,2(H)=CF1(H)+CF2(H)+CF1(H)CF2(H)CF1(H)和CF2(H)异号:CF1,2(H)=CF1(H)+CF2(H)5/15/202374第七十四页,共九十三页。在MYCIN系统的基础上形成的专家系统工具EMYCIN,将其修改为:在组合两个以上的独立证据时,可先组合其中两个,再将结果与第三个证据组合,如此下去,直到组合完毕为止。当CF1(H)0,CF2(H)0时:CF1,2(H)=CF1(H)+CF2(H)-CF1(H)CF2(H)当CF1(H)<0,CF2(H)<0:CF1,2(H)=CF1(H)+CF2(H)+CF1(H)CF2(H)当CF1(H)和CF2(H)异号时:5/15/202375第七十五页,共九十三页。即:已知规则IFETHENHCF(H,E)及CF(H),求CF(H|E)4、在已知结论原始可信度的情况下,结论可信度的更新计算方法这时分三种情况进行讨论。5/15/202376第七十六页,共九十三页。CF(H)0,CF(H,E)0:CF(H|E)=CF(H)+CF(H,E)-CF(H,E)CF(H)CF(H)<0,CF(H,E)<0:CF(H|E)=CF(H)+CF(H,E)+CF(H,E)CF(H) CF(H)和CF(H,E)异号:①当CF(E)=1时,即证据肯定出现时5/15/202377第七十七页,共九十三页。CF(H)0,CF(H,E)0:CF(H|E)=CF(H)+CF(H,E)CF(E)-CF(H)CF(H,E)CF(E)CF(H)<0,CF(H,E)<0:CF(H|E)=CF(H)+CF(H,E)CF(E)+CF(H)CF(H,E)CF(E)CF(H)和CF(H,E)异号:②当0<CF(E)<1时5/15/202378第七十八页,共九十三页。③当CF(E)0时在MYCIN系统中就规定,当CF(E)0.2时,规则IFETHENH不可使用。结论可信度的合成算法和更新算法本质上是一致的,但对不同前提条件,使用不同的方法,解题的效果或难易程度不同。有些题目使用合成法求解就比较容易,而有些题目就需要使用更新法。规则不可使用,对结论H的可信度无影响。5/15/202379第七十九页,共九十三页。R1:IFA1THENB1CF(B1,A1)=0.8R2:IFA2THENB1CF(B1,A2)=0.5R3:IFB1A3THENB2

CF(B2,B1A3)=0.8并且已知:CF(A1)=CF(A2)=CF(A3)=1而对B1,B2一无所知。求CF(B1)和CF(B2)。三、可信度方法应用举例1、多条知识下,合成法求结论可信度举例举例15/15/202380第八十页,共九十三页。解:由于对B1,B2的初始可信度一无所知,使用合成算法计算A1B1R1A2R2A3B2R3①对知识R1和R2,分别计算CF(B1)CF1(B1)=CF(B1,A1)max{0,CF(A1)}=0.81=0.8CF2(B1)=CF(B1,A2)max{0,CF(A2)}=0.51=0.5②利用合成算法计算B1的综合可信度CF1,2(B1)=CF1(B1)+CF2(B1)-CF1(B1)CF2(B1)=0.8+0.5-0.80.5=0.9③计算B2的可信度CF(B2)CF(B2)=CF(B2,B1A3)max{0,CF(B1A3)}=0.8max{0,min{CF(B1),CF(A3)}}=0.8max{0,min{0.9,1}}=0.8max{0,0.9}=0.80.9=0.725/15/202381第八十一页,共九十三页。R1:IFE1THENHCF(H,E1)=0.8R2:IFE2THENHCF(H,E2)=0.6R3:IFE3THENHCF(H,E3)=-0.5R4:IFE4(E5E6)THENE1CF(E1,E4(E5E6))=0.7R5:IFE7E8THENE3CF(E3,E7E8)=0.9在系统运行中已从用户处得:CF(E2)=0.8,CF(E4)=0.5,CF(E5)=0.6,CF(E6)=0.7,CF(E7)=0.6,CF(E8)=0.9求:CF(H)举例25/15/202382第八十二页,共九十三页。解:由已知知识建立推理网络如图。E1HR1E2R2E3R3E4E5E6R4E8E7R55/15/202383第八十三页,共九十三页。由R4:CF(E1)=CF(E1,E4(E5E6))max{0,CF(E4(E5E6))=0.7max{0,min{CF(E4),CF(E5E6)}}=0.7max{0,min{CF(E4),max{CF(E5),CF(E6)}}}=0.7max{0,min{CF(E4),max{0.6,0.7}}}=0.7max{0,min{CF(E4),0.7}}=0.7max{0,min{0.5,0.7}}=0.7max{0,0.5}=0.70.5=0.35由R5:CF(E3)=CF(E3,E7E8)max{0,CF(E7E8)}=0.9max{0,min{CF(E7),CF(E8)}}=0.9max{0,min{0.6,0.9}}=0.9max{0,0.6}=0.90.6=0.545/15/202384第八十四页,共九十三页。由R1:将R1和R2两条知识合成:CF1,2(H)=CF1(H)+CF2(H)-CF1(H)CF2(H)=0.28+0.48-0.280.48=0.6256CF1(H)=CF(H,E1)max{0,CF(E1)}=0.8max{0,0.35}=0.80.35=0.28由R2:CF2(H)=CF(H,E2)max{0,CF(E2)}=0.6max{0,0.8}=0.60.8=0.48由R3:CF3(H)=CF(H,E3)max{0,CF(E3)}=-0.5max{0,0.54}=-0.50.54=-0.275/15/202385第八十五页,共九十三页。将CF1,2(H)和CF3(H)合成5/15/202386第八十六页,共九十三页。规则可信度为:2、多条知识下,更新法求结论可信度举例证据可信度为:CF(A)=CF(B)=CF(C)=CF(D)=0.5X,Y的初始可信度为:CF0(X)=0.1,CF0(Y)=0.2要求用MYCIN的方法计算:结论X的可信度CF(X)结论Y的可信度CF(Y)R1:AX CF(X,A)=0.8R2:BX CF(X,B)=0.6R3:CX CF(X,C)=0.4R4:XDY CF(Y,XD)=0.3举例35/15/202387第八十七页,共九十三页。解:考虑X,Y具有初始可信度,故用更新法计算结论可信度。先计算X的可信度更新值:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论