江苏省无锡市江阴市敔山湾实验学校2022-2023学年八年级数学第二学期期末经典试题含解析_第1页
江苏省无锡市江阴市敔山湾实验学校2022-2023学年八年级数学第二学期期末经典试题含解析_第2页
江苏省无锡市江阴市敔山湾实验学校2022-2023学年八年级数学第二学期期末经典试题含解析_第3页
江苏省无锡市江阴市敔山湾实验学校2022-2023学年八年级数学第二学期期末经典试题含解析_第4页
江苏省无锡市江阴市敔山湾实验学校2022-2023学年八年级数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.“已知:正比例函数与反比例函数图象相交于两点,其横坐标分别是1和﹣1,求不等式的解集.”对于这道题,某同学是这样解答的:“由图象可知:当或时,,所以不等式的解集是或”.他这种解决问题的思路体现的数学思想方法是()A.数形结合 B.转化 C.类比 D.分类讨论2.方程x(x﹣1)=x的解是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=23.若,,则代数式的值为A.1 B. C. D.64.已知A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系的是()A.y2>y1>y3 B.y1>y2>y3 C.y3>y2>y1 D.y1>y3>y25.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()

A.30 B.36 C.54 D.726.如图,在已知的△ABC中,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径作弧,两弧相交于两点EF;②作直线EF交BC于点D连接AD.若AD=AC,∠C=40°,则∠BAC的度数是()A.105° B.110° C.I15° D.120°7.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是()A.小时 B.小时 C.或小时 D.或或小时8.在平面直角坐标系中,点到原点的距离是()A. B. C. D.9.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:;;;,从中任选两个条件,能使四边形ABCD为平行四边形的选法有A.2种 B.3种 C.4种 D.5种10.下列各式从左到右的变形为分解因式的是()A.x(x﹣y)=x2﹣xy B.x2+2xy+1=x(x+2y)+1C.(y﹣1)(y+1)=y2﹣1 D.x(x﹣3)+3(x﹣3)=(x+3)(x﹣3)二、填空题(每小题3分,共24分)11.如果关于x的方程kx2﹣6x+9=0有两个相等的实数根,那么k的值为_____.12.如图,在□ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为.13.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:=2,=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).14.三角形的两边长分别为3和6,第三边的长是方程-6x+8=0的解,则此三角形的第三边长是_____15.如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4,则□ABCD的面积等于________.16.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD为等边三角形,点E为△BCD围成的区域(包括各边)内的一点,过点E作EM∥AB,交直线AC于点M,作EN∥AC,交直线AB于点N,则的最大值为_____.17.如图,△ABC和△BDE都是等边三角形,A、B、D三点共线.下列结论:①AB=CD;②BF=BG;③HB平分∠AHD;④∠AHC=60°,⑤△BFG是等边三角形.其中正确的有____________(只填序号).18.“m2是非负数”,用不等式表示为___________.三、解答题(共66分)19.(10分)已知:线段m、n和∠(1)求作:△ABC,使得AB=m,BC=n,∠B=∠;(2)作∠BAC的平分线相交BC于D.(以上作图均不写作法,但保留作图痕迹)20.(6分)如图,在平面直角坐标系中,直线EF交x,y轴子点F,E,交反比例函数(x>0)图象于点C,D,OE=OF=,以CD为边作矩形ABCD,顶点A与B恰好落在y轴与x轴上.(1)若矩形ABCD是正方形,求CD的长;(2)若AD:DC=2:1,求k的值.21.(6分)解不等式组:,并把解集表示在数轴上;22.(8分)(1)解方程组;(2)解不等式组,并把解集在数轴上表示出来.23.(8分)分解因式:(1).(2).24.(8分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?25.(10分)某中学需要添置一批教学仪器,方案一:到厂家购买,每件原价40元,恰逢厂家促销活动八折出售;方案二学校自己制作,每件20元,另外需要制作工具的租用费600元;设该学校需要购买仪器x件,方案一与方案二的费用分别为y1和y2(元)(1)请分别求出y1,y2关于x的函数表达式;(2)若学校需要购买仪器30~60(含30和60)件,问采用哪种方案更划算?请说明理由.26.(10分)甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h.(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:根据数形结合法的定义可知.解:由正比例函数y1=kx(k>0)与反比例函数y2=(m>0)图象相交于A、B两点,其横坐标分别是1和﹣1,然后结合图象可以看出x>1或﹣1<x<0时,y1>y2,所以不等式kx>的解集是x>1或﹣1<x<0”.解决此题时将解析式与图象紧密结合,所以解决此题利用的数学思想方法叫做数形结合法.故选A.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.2、D【解析】

移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x(x−1)=x,x(x−1)−x=0,x(x−1−1)=0,x=0,x−1−1=0,x1=0,x1=1.故选:D.【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.3、C【解析】

直接提取公因式将原式分解因式,进而将已知数值代入求出答案.【详解】,,.故选:.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.4、B【解析】

解:根据函数的解析式可得:,=1,,则故选:B.【点睛】本题考查反比例函数的性质,正确计算是解题关键.5、D【解析】

求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,

∴DE=AM=9,ME=AD=10,

又由题意可得,BM=BC=AD=5,则BE=15,

在△BDE中,∵BD2+DE2=144+81=225=BE2,

∴△BDE是直角三角形,且∠BDE=90°,

过D作DF⊥BE于F,

则DF=,

∴S▱ABCD=BC•FD=10×=1.

故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.6、D【解析】

利用基本作图得到EF垂直平分AB,根据垂直平分线的性质可得DA=DB,根据等腰三角形的性质可得∠B=∠DAB,然后利用等腰三角形的性质可得∠ADC=40°,根据三角形外角性质可得∠B=20°,根据三角形内角和定理即可得答案.【详解】由作法得EF垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD=AC,∠C=40°,∴∠ADC=∠C=40°,∵∠ADC=∠B+∠DAB,∴∠B=∠ADC=20°,∴∠BAC=180°-∠B-∠C=120°.故选:D.【点睛】本题考查的是基本尺规作图和线段垂直平分线的性质,熟练掌握线段的垂直平分线上的点到线段的两个端点的距离相等的性质是解题的关键.7、C【解析】

利用众数及中位数的定义解答即可.【详解】解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C.【点睛】本题考查了众数及中位数的概念,解题的关键是根申请题意,并结合题意分类讨论解答.8、C【解析】

根据勾股定理可求点到原点的距离.【详解】解:点到原点的距离为:;故选:C.【点睛】本题考查了勾股定理,两点间的距离公式,熟练掌握勾股定理是解题的关键.9、C【解析】

根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形.③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形.①③可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.①④可证明△ABO≌△CDO,进而得到AB=CD,可利用一组对边平行且相等的四边形是平行四边形,判定出四边形ABCD为平行四边形.故选C【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理,属于中档题.10、D【解析】

根据因式分解的定义:将多项式和的形式化为整式积的形式,判断即可.【详解】解:A、没把一个多项式转化成几个整式积,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积,故D正确;故选:D.【点睛】此题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.二、填空题(每小题3分,共24分)11、1.【解析】

根据题意方程有两个相等实根可知△=0,代入求值即可解题.【详解】∵关于x的方程kx2﹣6x+9=0有两个相等的实数根,∴△=(﹣6)2﹣4k×9=0且k≠0,解得:k=1,故答案为:1.【点睛】本题考查了一元二次方程根的判别式,本题解题关键是根据题意得到根的情况,代值到判别式即可解题.12、21【解析】10+7+4=2113、答案为:乙;【解析】【分析】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定;乙的方差比较小,所以乙的成绩比较稳定.故答案为乙【点睛】本题考核知识点:方差.解题关键点:理解方差的意义.14、1【解析】

求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=1时,看看是否符合三角形三边关系定理;求出即可.【详解】解:x2-6x+8=0,

(x-2)(x-1)=0,

x-2=0,x-1=0,

x1=2,x2=1,

当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,

当x=1时,符合三角形的三边关系定理,此三角形的第三边长是1,

故答案为:1.【点睛】本题考查三角形的三边关系定理和解一元二次方程等知识点,关键是掌握三角形的三边关系定理,三角形的两边之和大于第三边.15、16【解析】

根据等边三角形性质求出OA=OB=AB,根据平行四边形性质推出AC=BD,根据矩形的判定推出平行四边形ABCD是矩形;求出AC长,根据勾股定理求出BC,根据矩形的面积公式求出即可.【详解】∵△AOB是等边三角形,∴OA=OB=AB=4,∵四边形ABCD是平行四边形,∴AC=2OA,BD=2OB,∴AC=BD,∴平行四边形ABCD是矩形.∵OA=AB=4,AC=2OA=8,四边形ABCD是矩形,∴∠ABC=90°,∵在Rt△ABC中,由勾股定理得:BC=,∴▱ABCD的面积是:AB×BC=4×4=16.【点睛】此题考查矩形的判定与性质,平行四边形的性质,勾股定理,等边三角形的性质,解题关键在于求出AC长.16、【解析】

作辅助线,构建30度的直角三角形将转化为NH,将,即:过A点作AM∥BC,过作交的延长线于点,,由△BCD围成的区域(包括各边)内的一点到直线AP的最大值时E在D点时,通过直角三角形性质和勾股定理求出DH’即可得到结论.【详解】解:过A点作AP∥BC,过作交的延长线于点,,,四边形是平行四边形,设,,∵∠ACB=90°,∠CAB=60°,∴∠CAM=90°,∠NAH=30°,中,,∵NE∥AC,NH∥AC,∴E、N、H在同一直线上,,由图可知:△BCD围成的区域(包括各边)内的一点到直线AM距离最大的点在D点,过D点作,垂足为.当在点时,=取最大值.∵∠ACB=90°,∠A=60°,AB=6,,∴AC=3,AB=,四边形ACGH’是矩形,∴,∵△BCD为等边三角形,,∴=,∴,∴的最大值为,故答案为.【点睛】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度.解题关键是根据在直角三角形中,30°角所对的边等于斜边的一半对进行转化,使得最大值问题转化为点到直线的距离解答.17、②③④⑤【解析】

由题中条件可得△ABE≌△CBD,得出对应边、对应角相等,进而得出△BGD≌△BFE,△ABF≌△CGB,再由边角关系即可求解题中结论是否正确,进而可得出结论.【详解】∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∠BDC=∠AEB,又∵∠DBG=∠FBE=60°,∴在△BGD和△BFE中,,∴△BGD≌△BFE(ASA),∴BG=BF,∠BFG=∠BGF=60°,∴△BFG是等边三角形,∴FG∥AD,在△ABF和△CGB中,,∴△ABF≌△CGB(SAS),∴∠BAF=∠BCG,∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,∴∠AHC=60°,∴②③④⑤都正确.故答案为②③④⑤.【点睛】本题主要考查了等边三角形的性质及全等三角形的判定及性质问题,能够熟练掌握.18、≥1【解析】

根据非负数即“≥1”可得答案.【详解】解:“m2是非负数”,用不等式表示为m2≥1,故答案为:m2≥1.【点睛】本题主要主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.三、解答题(共66分)19、(1)见解析;(2)见解析.【解析】

(1)先作出∠MBN=∠,然后在边BM上截取BA=m得到点A,在以A为圆心AC=n为半径画弧角AN于C,得到点C,连接AC,即可得到符合要求的图形.(2)以点A为圆心,任意长为半径画弧,再以弧与角两边的交点为圆心,大于两弧交点的一半长为半径画弧,两弧的交点为E,连接AE,交BC于D,.AD就是所求∠BAC的角平分线.【详解】解:(1)如图所示的△ABC就是所要求作的图形.(2)如图所示;【点睛】本题主要考查了作一个角等于已知角,作一条线段等于已知线段的作法,作已知角的角平分线,都是基本作图,需要熟练掌握.20、(1);(2)k=12【解析】【分析】(1)根据等腰三角形的性质以及勾股定理可得EF的长,继而根据正方形的性质即可得DE=DC=CF,从而即可求得CD的长;(2)由四边形ABCD是矩形,可得AD=BC,根据(1)得:AD=DE,BC=FC,且2CD=AD,从而可得2CD=DE=CF,根据DE+CD+FC=EF,继而可求得DE的长,作DG⊥AE,垂足为点G,在等腰直角三角形ADE中,求得DG=EG=2,继而求得OG长,从而可得点D(2,3),即可求得k.【详解】(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ADC=∠BCD=90°,∴∠ADE=∠BCF=90°,∵OE=OF=5,又∵∠EOF=90°,∴∠OEF=∠OFE=45°,FE=10,∴CD=DE=AD=CB=CF=;(2)∵四边形ABCD是矩形,∴AD=BC,∵由(1)得:AD=DE,BC=FC,且2CD=AD,∴2CD=DE=CF,∵DE+CD+FC=EF,∴DE=EF=4,作DG⊥AE,垂足为点G,由(1)得在等腰直角三角形ADE中,DG=EG=DE=2,∴OG=OE-EG=5-2=3,∴D(2,3),得:k=12.【点睛】本题考查了反比例函数与几何的综合,涉及到等腰直角三角形的性质、正方形的性质、矩形的性质等,熟练掌握相关性质和定理以及反比例函数比例系数k的几何意义是解题的关键.21、【解析】

分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】∵解不等式得:,解不等式得:,∴不等式组的解集是,

在数轴上表示不等式组的解集为:【点睛】本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集的应用,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22、(1);(2)-2≤x<0,见解析.【解析】

(1)根据加减消元法解方程即可求解;(2)先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集,并把解集在数轴上表示出来即可.【详解】解:(1),②×3-①×2得5x=15,解得:x=3,把x=3代入②得3×3-2y=7,解得:y=1.故原方程组的解为;(2),解不等式①得:x<0,解不等式②得:x≥-2,故不等式组的解集为-2≤x<0,在数轴上表示为:【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集、解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能根据不等式的解找出不等式组的解集是解(2)的关键.23、(1);(2)【解析】

(1)首先提取公因式2,进而利用完全平方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论