




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
参数方程和普通方程的互化参数方程和普通方程的互化/NUMPAGES19参数方程和普通方程的互化参数方程和普通方程的互化参数方程和普通方程的互化
教学目标1.理解参数方程和消去参数后所得的普通方程是等价的.2.基本掌握消去参数的方法.3.培养学生观察、猜想和灵活地进行公式的恒等变形的能力.即在“互化”训练中,提高学生解决数学问题的转化能力.教学重点与难点使学生掌握参数方程与普通方程之间的互化法则,明确新旧知识之间的联系,掌握消去参数的基本方法.教学过程师:前面的课程里,我们学习了参数方程,下面请看这样一个问题:(放投影片)由圆外一点Q(a,b)向圆x2+y2=r2作割线,交圆周于A、B两点,求AB中点P的轨迹的参数方程(如图3-5).分析
割线过点Q(a,b),故割线PQ方程为:此斜率k可作为参数.(投影)解
设过点Q的直线方程是y-b=k(x-a),则圆心O与AB中点P的即为所求点P的轨迹的参数方程.师:你能根据点P的参数方程说出点P的轨迹吗?生:(无言以对)看不出来.(启发学生猜想,培养参与意识.)师:你通过题目中点P符合的条件,多画几个点,猜想一下它的形状.(学生在纸上画,讨论.)生:点P的轨迹(1)过坐标原点,也就是已知圆的圆心.(2)轨迹不是直线.师:参数方法是研究曲线和方程的又一种方法,是一种利用参数建立两个变量之间的间接联系的方法.也就是说,参数方程里的参数可以协调x、y的变化.基于这点理论,有时为了判定曲线的类型、研究曲线的几何性质,需要把参数方程化为普通方程.即想办法消去参数k,把参数方程转化为我们熟知的普通方程,再去研究它的几何性质就容易了.把(3)代入(2)得:x2-ax+y2-by=0.(4)方程(4)证实了我们的猜想是正确的,具体地说:点P的轨迹是一个过圆心的圆弧(在圆x2+y2=r2的内部).师:以上事例说明,有时为了判定曲线的类型,研究曲线的几何性质,确实需要把参数方程化为我们认知的普通方程.这节课我们就来学习把参数方程化为普通方程的法则.例1
炮弹从点(0,0)以初速度v0向倾斜角为α的方向发射,问:(1)在时刻t的高度和水平距离如何?(2)炮弹描绘的(弹道)是一条什么样的曲线?(学生通过物理知识,很容易解决这个问题.)解
(1)设炮弹发射后的位置在点M(x,y)(如图3-6),因为炮弹在Ox方向是以v0cosα为速度的匀速直线运动,在Oy方向是以v0sinα为初速度的竖直上抛运动,所以按匀速直线运动的公式知:炮弹在时刻t的水平距离是x=v0cosα·t,按竖直上抛运动的位移公式知:炮弹在时即弹道曲线的参数方程上看不出来,那么怎么办呢?生:消去参数t,转化成为普通方程后,就可看出曲线的形状了.故炮弹描绘的曲线是一条抛物线.(含顶点在内的一部分.因为二次项系数是负值,所以这是开口向下的抛物线,与实际问题相吻合.)例2
把参数方程即3x+5y-11=0是所求的普通方程,它的轨迹是一条直线.师:这个同学理解了消参的基本方法——代入消参法.这正与解方程组中代入消元法相类似.他用学过的知识解决了新问题.你认为他的解题过程有问题吗?生:挺好的.我与他解的一样,没问题.师:同学们在解题时注意参数t的取值范围了吗?生:t为不等于-1的实数,即t≠-1.师:答案是否有何不妥?生:没觉得哪儿不妥,轨迹确实是一条直线.师:普通方程是相对于参数方程而言的,它反映了坐标变量x与y之间的直接关系,而参数方程是通过参数反映坐标变量x与y之间的间接关系.如能消去参数(不是所有的参数方程都能化为普通方程),参数方程就转化为普通方程,所以普通方程和参数方程是同一曲线的两种不同的表达形式.为此,在化参数方程为普通方程时,必须注意变数的范围不应扩大或缩小,也就是对应曲线上的点不应增加也不应减小.这就要求参数方程和消去参数后的普通方程等价.请修正一下你的答案.生:3x+5y-11=0(x≠-3)是所求的普通方程,它的轨迹是一条直线(去掉点(-3,4)).师:观察一下方程(1)、(2)的形式与你学过的知识中哪个式子类似?(提供类比,用以理解直线的参数方程形式不只一种,它与选定的参数相关.)至此,想必学生悟到t的几何意义:动点P分P1P2所成的比,即t=解
过点(2,1),(-3,4)的直线方程是:化简,得3x+5y-11=0.师:这个事实说明,据参数的几何意义,也能达到消参的目的.
师:例2表明,直线的参数方程的形式不只一种.那么对同一个参数方程来说,指定的参数不同,会带来曲线的形状不同吗?你试试看.(激发学生探索问题的兴趣)生:对同一个参数方程来讲,由于指定的参数不同,会带来曲线形状的变化.例4
化下列参数方程为普通方程.(让学生按小组讨论求解,然后在投影仪上打出答案.)略解
(1)(x+1)2+y=sin2θ+cos2θ,所以
(x+1)2+y=1,(0≤y≤1).所以x2-y2=4.师:消去参数的方法常用的有哪些?转化过程中应注意什么?(学生讨论后教师板书)消去参数的方法常用的有以下两种:(1)代入法:先求出参数的表达式,然后代入另一个方程中去(如例1).(2)利用代数或三角函数中的恒等式消去参数.(如例4)转化过程中应注意参数的范围不能扩大也不能缩小.也就是对应曲线上的点,不应增加也不应减少,保证参数方程和消参后的普通方程等价.师:方程组中有3个变量,其中的x和y表示曲线上点的坐标;θ是参变量.参数方程之所以能描绘出动点的轨迹,是由于当给出一个参数值时,就能唯一地求出相应的x与y的值,因而也就确定了这时点所在的位置.所以问题可转化为讨论当θ为何值时,点P到直线的距离最小问题.因为tanθ、cotθ同号,又|tanθ+2cotθ+2|≥|tanθ+2cotθ|-|2|,从例5的结论知道,参数θ不是问题的主要对象,却能牵动主要对象的根本性质.这个问题的解决再一次说明:参数方程能明确地揭示点的运动规律,对解决某些问题有不可替代的优越性.师:这节课我们学习了参数方程化为普通方程的法则.首先通过问题的提出,我们知道有时为了判定曲线的类型,研究曲线的几何性质,需要把参数方程化为普通方程.又在将参数方程化为普通方程的过程中,掌握了消去参数的常用方法,并且理解了参数方程和消去参数后所得的普通方程为什么要等价.家庭作业:一、把下列参数方程化为普通方程,并说明它们各表示什么曲线.二、关于t的方程t2+(2+i)t+4xy+(2x-y)i=0(x,y∈R,i是虚数单位)有实根,求动点P(x,y)的轨迹的普通方程.下面是作业题略解.一、(1)(x-x0)2+(y-y0)2=t2,以(x0,y0)为圆心,|t|为半径的圆.(2)y-y0=tanθ(x-x0),过点(x0,y0),斜率是tanθ的直线.(3)2x+y-5=0(0≤x<3),缺一个端点的线段.(4)y2-x2=4(y≥2),双曲线的上支.二、已知方程整理为:(t2+2t+4xy)+i(2x-y+t)=0因为x,y,t∈R,得4x2+y2+4x-2y=0为所求.设计说明参数方程与普通方程的互化,应该是两课时,这是第一课时的内容:参数方程化为普通方程.对这一问题课本仅用3/2页的篇幅介绍了互化的方法共3个例题.纵观全章《参数方程、极坐标》也只是对参数方程进行了初步研究.而事实上,参数方程也是解析几何的重要内容之一,是继续学习数学知识的基础,在生产实践中也有广泛的应用.我们知道,参数方程与带有参数的问题固然不同,但是学习参数方程对于熟练参数的运用却很有帮助.更有一类问题,看来不是参数方程,而实质上是参数方程问题.这就是所求轨迹的方程,轨迹是双曲线.这解法有些使人莫名其妙,实际上这是参数方程.本来我们应该先把对应直线的交点求出来:这就是所求轨迹的参数方程.为了求x、y的方程而消t的话,可以照这样进行:数学中的参数好像是一种活泼的元素,有它
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电子商务网站用户体验提升咨询合同
- 手工艺与现代旅游业的结合考核试卷
- 游戏界面设计质量周期及保证措施
- 网络虚拟货币与游戏经济考核试卷
- 热效应实验中的误差来源分析考核试卷
- 2025年绿化苗木购销合同范例
- 办公楼供水管网系统维护质量管理体系与措施
- 2025年小学招生合同授权协议书
- 健康心灵 美丽人生
- 2025年规范化个人贷款申请还款合同
- 间歇充气加压用于静脉血栓栓塞症预防的中国专家共识(2022年版)
- 机器人机械结构设计教案
- 胎儿宫内窘迫的护理
- 四川建筑安全员-C证考试(专职安全员)题库及答案
- 邻近铁路营业线施工安全监测技术规程 (TB 10314-2021)
- 职业倦怠量表MBI-HSS
- 婚介增值服务流程
- 胖东来商贸集团发展战略研究
- 军队文职人员(司机岗)考试题库大全-道路交通安全法律、法规和规章(重点题)
- 安全扫描与漏洞修复
- 《二硫化钼润滑涂料》编制说明
评论
0/150
提交评论