版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A. B. C. D.2.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)33.544.5人数1132A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.53.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()A.本市明天将有的地区下雨 B.本市明天将有的时间下雨C.本市明天下雨的可能性比较大 D.本市明天肯定下雨4.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交 B.相切 C.相离 D.不能确定5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a76.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)7.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+38.点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.或2 B.或2 C.2或2 D.2或29.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案32.52.55则最省钱的方案为()A.方案1 B.方案2C.方案3 D.三个方案费用相同10.-3的倒数是()A.3 B.13 C.-111.下列几何体是棱锥的是()A. B. C. D.12.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于_____.14.因式分解:a3﹣2a2b+ab2=_____.15.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.16.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.17.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.18.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是,位置关系是.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.20.(6分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.21.(6分)观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.22.(8分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.23.(8分)已知关于x,y的二元一次方程组的解为,求a、b的值.24.(10分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点.求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长25.(10分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.26.(12分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.27.(12分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C2、A【解析】
根据众数和中位数的概念求解.【详解】这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选A.【点睛】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、C【解析】试题解析:根据概率表示某事情发生的可能性的大小,分析可得:A、明天降水的可能性为85%,并不是有85%的地区降水,错误;B、本市明天将有85%的时间降水,错误;C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确;D、明天肯定下雨,错误.故选C.考点:概率的意义.4、A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.5、B【解析】
根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.【点睛】此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.6、A【解析】
作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【详解】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故选A.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.7、D【解析】
直接利用配方法将原式变形,进而利用平移规律得出答案.【详解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+1.故选D.【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.8、C【解析】
过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【详解】过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,连接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如图②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故选C.【点睛】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.9、A【解析】
求出三种方案混合糖果的单价,比较后即可得出结论.【详解】方案1混合糖果的单价为,方案2混合糖果的单价为,方案3混合糖果的单价为.∵a>b,∴,∴方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.10、C【解析】
由互为倒数的两数之积为1,即可求解.【详解】∵-3×-13=1,∴故选C11、D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.12、A【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】用科学记数法表示16000,应记作1.6×104,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、5+3或5+5.【解析】
分两种情况讨论:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为5+3或5+5.【详解】由题意可知,存在以下两种情况:(1)当一条直角边是另一条直角边的一半时,这个直角三角形是半高三角形,此时设较短的直角边为a,则较长的直角边为2a,由勾股定理可得:,解得:,∴此时较短的直角边为,较长的直角边为,∴此时直角三角形的周长为:;(2)当斜边上的高是斜边的一半是,这个直角三角形是半高三角形,此时设两直角边分别为x、y,这有题意可得:①,②S△=,∴③,由①+③得:,即,∴,∴此时这个直角三角形的周长为:.综上所述,这个半高直角三角形的周长为:或.故答案为或.【点睛】(1)读懂题意,弄清“半高三角形”的含义是解题的基础;(2)根据题意,若直角三角形是“半高三角形”,则存在两种情况:①一条直角边是另一条直角边的一半;②斜边上的高是斜边的一半;解题时这两种情况都要讨论,不要忽略了其中一种.14、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案为a(a﹣b)1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15、【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.16、50°【解析】【分析】直接利用圆周角定理进行求解即可.【详解】∵弧AB所对的圆心角是100°,∴弧AB所对的圆周角为50°,故答案为:50°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17、4【解析】
连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.【详解】如图,连接并延长交于G,连接并延长交于H,∵点E、F分别是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.18、17【解析】
先利用完全平方公式展开,然后再求和.【详解】根据(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9,x2+y2-2xy=9,所以x2+y2=17.【点睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等价变形:,,.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由见解析(3)【解析】
(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;【详解】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如图②中,设AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【点睛】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.20、(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【解析】
(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,∴h=1,把原点坐标代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵抛物线y=(x﹣1)2+k与x轴有公共点,∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,∴k≤2.当x=﹣1时,y=4+k;当x=2时,y=1+k,∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,∴4+k>2且1+k<2,解得﹣4<k<﹣1,综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.21、(1)=4;(2)=n.【解析】
试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;(2)第n个等式是:=n.证明如下:∵===n∴第n个等式是:=n.点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.22、(1)y=x2+2x﹣3;(2);(3)详见解析.【解析】试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;(2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;(3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,∴B(-3,0),设抛物线的表达式为y=a(x+3)(x-1),将点D(-4,5)代入,得5a=5,解得a=1,∴抛物线的表达式为y=x2+2x-3;(2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=-(m+)2+.∴△ACE的面积的最大值为;(3)当AD为平行四边形的对角线时:设点M的坐标为(-1,a),点N的坐标为(x,y).∴平行四边形的对角线互相平分,∴=,=,解得x=-2,y=5-a,将点N的坐标代入抛物线的表达式,得5-a=-3,解得a=8,∴点M的坐标为(-1,8),当AD为平行四边形的边时:设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,∴M(-1,16),将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,∴M(-1,26),综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.23、或【解析】
把代入二元一次方程组得到关于a,b的方程组,经过整理,得到关于b的一元二次方程,解之即可得到b的值,把b的值代入一个关于a,b的二元一次方程,求出a的值,即可得到答案.【详解】把代入二元一次方程组得:,
由①得:a=1+b,
把a=1+b代入②,整理得:
b2+b-2=0,
解得:b=-2或b=1,
把b=-2代入①得:a+2=1,
解得:a=-1,
把b=1代入①得:
a-1=1,
解得:a=2,
即或.【点睛】本题考查了二元一次方程组的解,正确掌握代入法是解题的关键.24、(1)见解析;(2)PE=4.【解析】
(1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;(2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.【详解】解:(1)证明:∵BC是⊙O的直径,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)证明:连结OE∵E为BD弧的中点.∴∠DCE=∠BCE∵OC=OE∴∠BCE=∠OEC∴∠DCE=∠OEC∴OE∥CD∴△POE∽△PCD,∴∵PB=BO,DE=2∴PB=BO=OC∴∴∴PE=4【点睛】本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.25、证明见解析.【解析】
由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.【详解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于点C,AE⊥BD于点E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【点睛】本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.26、(1);(2)1.【解析】
(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根据S=x(12﹣x)=﹣(x﹣6)2+1,可得当x=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度浔购F000353632食品级冰柜采购协议3篇
- 2025年度个人房产买卖居间代理服务协议3篇
- 二零二五年度环保型打印耗材研发与销售合同可打印协议书下载3篇
- 医疗技术产品的研发与市场应用
- 二零二五年度瓷砖行业环保公益活动赞助合同3篇
- 未来办公环境绿色办公创业项目策划
- 二零二五年度编织袋行业政策研究与解读合同3篇
- 2025版显示屏技术改造与升级合同3篇
- 湖北2025年湖北武汉理工大学专职辅导员招聘笔试历年参考题库附带答案详解
- 2025年度钢构工程钢结构焊接与检验合同协议
- 云南省普通高中学生综合素质评价-基本素质评价表
- 2024年消防产品项目营销策划方案
- 旅游公司发展规划
- 闻道课件播放器
- 03轴流式压气机b特性
- 五星级酒店收入测算f
- 大数据与人工智能ppt
- 人教版八年级下册第一单元英语Unit1 单元设计
- GB/T 9109.5-2017石油和液体石油产品动态计量第5部分:油量计算
- 邀请函模板完整
- 2023年江苏省南京市中考化学试卷2
评论
0/150
提交评论