版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一个直角三角形的两边长分别为2和,则第三边的长为()A.1 B.2 C. D.32.下列命题是真命题的是()A.将点A(﹣2,3)向上平移3个单位后得到的点的坐标为(1,3)B.三角形的三条角平分线的交点到三角形的三个顶点的距离相等C.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等D.平行四边形的对角线相等3.某小组7名同学积极捐出自己的零花钱支援地震灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,1.这组数据的众数和中位数分别是().A.50,20 B.50,30 C.50,50 D.1,504.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0 B.x<0 C.x>1 D.x<15.一组数据:﹣3,1,2,6,6,8,16,99,这组数据的中位数和众数分别是()A.6和6 B.8和6 C.6和8 D.8和166.下列数据特征量:平均数、中位数、众数、方差之中,反映集中趋势的量有()个.A. B. C. D.7.在四边形中,,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是()A. B. C. D.8.若一个五边形有三个内角都是直角,另两个内角的度数都等于,则等于()A. B. C. D.9.化简的结果是().A. B. C. D.10.如图,在▱ABCD中,BM是∠ABC的角平分线且交CD于点M,MC=2,▱ABCD的周长是16,则DM等于()A.1 B.2 C.3 D.411.一次函数的图象经过()A.一、二、三象限 B.一、二、四象限C.二、三、四象限 D.一、三、四象限12.下列事件中,是必然事件的是()A.3天内会下雨B.经过有交通信号灯的路口遇到红灯C.打开电视,正在播广告D.367人中至少有2个人的生日相同二、填空题(每题4分,共24分)13.在平面直角坐标系中,△ABC上有一点P(0,2),将△ABC向左平移2个单位长度,再向上平移3个单位长度,得到的新三角形上与点P相对应的点的坐标是_____.14.如图,△ABC是边长为6的等边三角形,D是AB中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60°得DF,连接CF,若CF=,则BE=_________。15.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为cm.16.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.17.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是_________.18.将函数的图象向下平移3个单位,所得图象的函数解析式为______.三、解答题(共78分)19.(8分)如图,AD是△ABC的高,BE平分∠ABC交AD于点E,∠C=70º,∠BED=64º,求∠BAC的度数.20.(8分)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?21.(8分)如图,在四边形ABCD中,AB=4,BC=3,CD=12,AD=13,∠B=90°,连接AC.求四边形ABCD的面积.22.(10分)近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?23.(10分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.24.(10分)如图,已知点在四边形的边上,设,,.(1)试用向量、和表示向量,;(2)在图中求作:.(不要求写出作法,只需写出结论即可)25.(12分)如图,在等腰直角三角形ABC中,∠ACB=90°,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm.(1)求证△CBE≌△ACD(2)求线段BE的长26.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,、、三点在同一直线上,,,,,量得.(1)试求点到的距离.(2)试求的长.
参考答案一、选择题(每题4分,共48分)1、C【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边2既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即2是斜边或直角边.【详解】当2和均为直角边时,第三边=;当2为斜边,为直角边,则第三边=,故第三边的长为或故选C.【点睛】此题考查勾股定理,解题关键在于分类讨论第三条边的情况.2、C【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、将点A(-2,3)向上平移3个单位后得到的点的坐标为(-2,6),是假命题;B、三角形的三条角平分线的交点到三角形的三条边的距离相等,是假命题;C、三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等,是真命题;D、平行四边形的对角线互相平分,是假命题;故选:C.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.3、C【解析】
根据众数和中位数的定义进行计算即可.【详解】众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;将这组数据从小到大的顺序排列为:20,25,30,2,2,2,1,处于中间位置的那个数是2,由中位数的定义可知,这组数据的中位数是2.故选:C.【点睛】本题考查众数和中位数,明确众数和中位数的概念是关键.4、B【解析】
直接根据函数的图象与y轴的交点为(0,1)进行解答即可:【详解】解:由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.5、A【解析】
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数.【详解】在这一组数据中6是出现次数最多的,故众数是6;这组数据已按从小到大的顺序排列,处于中间位置的两个数是6、6,那么由中位数的定义可知,这组数据的中位数是6;故选A.【点睛】本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6、B【解析】
根据平均数、中位数、众数、方差的性质判断即可.【详解】数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故选B.【点睛】本题考查的是平均数、中位数、众数、方差,掌握它们的性质是解题的关键.7、A【解析】
由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】∵四边形ABCD中,∠A=∠B=∠C=90°,∴四边形ABCD是矩形,当一组邻边相等时,矩形ABCD为正方形,这个条件可以是:.故选A.【点睛】此题考查正方形的判定,解题关键在于掌握判定定理.8、C【解析】
多边形的内角和可以表示成(n-2)•180°,因为所给五边形有三个角是直角,另两个角都等于α,列方程可求解.【详解】依题意有3×90+2α=(5-2)•180,解得α=1.故选C.【点睛】本题考查根据多边形的内角和计算公式求多边形的内角,解答时要会根据公式进行正确运算、变形和数据处理.9、B【解析】
根据三角形法则计算即可解决问题.【详解】解:原式,故选:B.【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.10、D【解析】
根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是16,求出CD=6,得到DM的长.【详解】解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是16,∴BC+CD=8,∴CD=6,则DM=CD﹣MC=4,故选:D.【点睛】本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.11、D【解析】
根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.【详解】解:∵一次函数中k=2>0,b=-4<0,
∴此函数的图象经过一、三、四象限.
故选:D.【点睛】本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.12、D【解析】
根据必然事件的概念.(有些事情我们事先肯定它一定会发生,这些事情称为必然事件.)【详解】解:3天内会下雨是随机事件,A错误;经过有交通信号灯的路口遇到红灯是随机事件,B错误;打开电视,正在播广告是随机事件,C错误;367人中至少有2个人的生日相同是必然事件,D正确,故选:D.【点睛】本题主要考查必然事件与随机事件的区别,他们的区别在于必然事件一定会发生,随机事件有可能发生,有可能不发生.二、填空题(每题4分,共24分)13、(﹣2,5)【解析】
平移的规律:平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:由点的平移规律可知,此题规律是:向左平移2个单位再向上平移3个单位,照此规律计算可知得到的新三角形上与点P相对应的点的坐标是(0﹣2,2+3),即(﹣2,5).故答案为(﹣2,5).【点睛】本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.14、1或2【解析】
当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。可证△FDH≌△EDB,再证△CHM≌△DHM,推出MH⊥CD,由勾股定理可得FM,由中位线可得MH,进而可计算FH,由全等可得FH=BE。同理可求DF在CD左侧时,FH的值,进而求BE的值。【详解】如图当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。易证△BDH是等边三角形,DH=BD,∠FDH=∠EDB,DF=DE∴△FDH≌△EDB∴FH=BE,∠FHD=∠B=60°在等边△BDH中∠DHB=60°∴∠CHF=60°∴MH=MH,∠CHM=∠MHD=60°,DH=CH,∴△CHM≌△DHM∴CM=DM,∵CM=DM,CH=BH∴MH//BD,∵CD⊥AB∴MH⊥CD∴∠CMF=90°∴∴∴BE==1同理可证,当DF在CD左侧时BE==2综上所诉,BE=1或2【点睛】灵活构造三角形全等,及中位线,勾股定理,等边三角形的性质是解题的关键。15、4.【解析】试题解析:∵四边形ABCD是矩形,∴OA=AC,OB=BD,BD=AC=8cm,∴OA=OB=4cm,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=4cm.考点:矩形的性质.16、y=﹣2x+1【解析】
直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+1.故答案为:y=﹣2x+1.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.17、AC⊥BD【解析】
对角线互相垂直的矩形是正方形,根据正方形的判定定理添加即可.【详解】∵四边形ABCD是矩形,对角线AC、BD相交于点O,∴当AC⊥BD时,四边形ABCD是正方形,故答案为:AC⊥BD.【点睛】此题考查正方形的判定定理,熟记定理并运用解题是关键.18、y=2x﹣1【解析】
根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【详解】根据“上加下减”的原理可得:函数y=2x的图象向下平移1个单位后得出的图象的函数解析式为y=2x﹣1.故答案为:y=2x﹣1.【点睛】本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.三、解答题(共78分)19、58°.【解析】
由已知条件,首先得出∠DAC=20°,再利用∠ABE=∠EBD,进而得出∠ABE+∠BAE=64°,求出∠EBD=26°,进而得出答案.【详解】∵AD是△ABC的高,∠C=70°,∴∠DAC=20°,∵BE平分∠ABC交AD于E,∴∠ABE=∠EBD,∵∠BED=64°,∴∠ABE+∠BAE=64°,∴∠EBD+64°=90°,∴∠EBD=26°,∴∠BAE=38°,∴∠BAC=∠BAE+∠CAD=38°+20°=58°.【点睛】此题主要考查了三角形的外角与三角形内角和定理等知识,题目综合性较强,注意从已知条件得出所有结论是解决问题的关键.20、20.8m.【解析】试题分析:过A作CN的平行线交BD于E,交MN于F,由相似三角形的判定定理得出△ABE∽△AMF,再由相似三角形的对应边成比例即可得出MF的长,进而得出结论.试题解析:过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM=90°.又∵∠BAE=∠MAF,∴△ABE∽△AMF.∴,即:,解得MF=20m.∴MN=MF+FN=20+0.8=20.8m.∴住宅楼的高度为20.8m.考点:相似三角形的应用.21、36【解析】
由AB=4,BC=3,∠B=90°可得AC=1.可求得S△ABC;再由AC=1,AD=13,CD=12,可得△ACD为直角三角形,进而求得S△ACD,可求S四边形ABCD=S△ABC+S△ACD.【详解】∵∠ABC=90°,AB=4,BC=3,∴AC=∵CD=12,AD=13,∴∴∴∠ACD=90°∴,∴【点睛】此题考查勾股定理及逆定理的应用,判断△ACD是直角三角形是关键.22、(1)每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元(2)至少进货甲种空气净化器10台.【解析】
(1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,根据用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同,列出方程求解即可;(2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据进货花费不超过42000元,列出不等式求解即可.【详解】(1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,由题意得:,解得:x=1200,经检验得:x=1200是原方程的解,则x+300=1500,答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.(2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据题意得:1200y+1500(30﹣y)≤42000,y≥10,答:至少进货甲种空气净化器10台.【点睛】本题考查分式方程和不等式的应用,分析题意,找到合适的等量关系列出方程和不等式是解决问题的关键.23、(1)详见解析;(2)当t=10时,▱AEFD是菱形;(3)当t=时,△DEF是直角三角形(∠EDF=90°);当t=1时,△DEF是直角三角形(∠DEF=90°).【解析】
(1)在Rt△ABC中,根据已知条件求得∠C=30°,由题意可知CD=4tcm,AE=2tcm;在直角△CDF中,根据30°角直角三角形的性质可得DF=CD=2tcm,由此即可证得DF=AE;(2)由DF∥AB,DF=AE,根据一组对边平行且相等的四边形是平行四边形可得四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即可得60﹣4t=2t,解得t=10,即当t=10时,▱AEFD是菱形;(2)能,分∠EDF=90°和∠DEF=90°两种情况求t的值即可.【详解】(1)证明:∵在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,∴∠C=90°﹣∠A=30°.由题意可知,CD=4tcm,AE=2tcm,又∵在直角△CDF中,∠C=30°,∴DF=CD=2tcm,∴DF=AE;(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=1时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4tcm,∴DF=AE=2tcm,∴AD=2AE=4tcm,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论