




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Section7.1BasicConceptsofDifferentialEquations2ExamplesofDifferentialEquationsExample1Supposethataplanecurvepassedthroughthepoint(1,2)inthexOyplane.Theslopeofthetangentatanypoint(x,y)tothecurveis2x.Findtheequationofthecurve.SolutionBythegeometricmeaningofderivatives,thedesiredcurvey=f(x)shouldsatisfy.Integratingonbothsidesofthe1stequationwithrespecttox,weobtaindifferentialequationInitialcondition3ExamplesofDifferentialEquationsSolution(continued)SubstitutingtheinitialconditiontothelastTherefore,theequationofthedesiredcurveisequation,wehaveFinish.whereCisanarbitraryconstant.Itcanbeevaluatedbytheinitialcondition.Example1Supposethataplanecurvepassedthroughthepoint(1,2)inthexOyplane.Theslopeofthetangentatanypoint(x,y)tothecurveis2x.Findtheequationofthecurve.Example2SupposethataparticlewithmassmfallsfreelyfromapositionofheightH,withinitialvelocityV0.Ifweneglecttheresistanceofair,findtherelationshipbetweentheheightH
andtimet
whiletheparticleisfalling.4ExamplesofDifferentialEquationsHh(t)SolutionDenotetheinitialtimewhentheparticlestartstofallbyt=0,anddenotetheheightoftheparticleatanytimetintheprocessoffallingbyh=h(t).ByNewton’ssecondlaw,hshouldsatisfythefollowingequationdifferentialequationInitialconditionsExample2SupposethataparticlewithmassmfallsfreelyfromapositionofheightH,withinitialvelocityV0.Ifweneglecttheresistanceofair,findtherelationshipbetweentheheightH
andtimet
whiletheparticleisfalling.5ExamplesofDifferentialEquationsHh(t)Solution(continued)
Integratingbothsidesofthelastequationtwice,wehaveFinish.Substitutingtheinitialconditiontotheaboveequationyields6BasicConceptsDefinition(Differentialequation)Anequationiscalledadifferentialequation(微分方程)ifitcontainsthederivativeordifferentialofanunknownfunction.andarebothdifferentialequations.DefinitionAdifferentialequationinwhichtheunknownfunctionyisaunivariate
function,iscalledanordinarydifferentialequation(常微分方程)
andwillbereferredasdifferentialequation(微分方程).Example:Theorderofthehighestorderderivativeoftheunknownfunctionintheequationiscalledtheorder(阶)
oftheequation.7BasicConceptsFirst-OrderSecond-OrderExample:Thegeneralformofafirstorderdifferentialequationmaybe
expressedbyandF(x,y)isafunctionwhichdependsontheindependentvariablexandthedependentvariabley.8BasicConceptsDefinition(Solution,GeneralSolution,InitialConditionsandParticularSolution)Ifthesolutioncontainsarbitraryconstantsandthenumberoftheindependentconstantsjustequalstheorderoftheequation,thenthissolutioniscalledthegeneralsolution(通解)
oftheequation.Ifallthearbitraryconstantsinasolutionhavebeendetermined,thenthesolutioniscalledaparticularsolution(特解)
oftheequation.Ifafunctiony=f(x)satisfiesagivendifferentialequation,thenthefunctiony=f(x)iscalledasolution(解)
oftheequation.Theadditionalconditionsarecalledtheinitialconditions(初始条件)
oftheequation.9FundamentalConceptsofDifferentialEquationsNotethatthegeneralsolutionmaynotbethetotalsolutions.Example10GeometricInterpretationoftheFirstOrderDifferentialEquation11GeometricInterpretationoftheFirstOrderDifferentialEquationSlopeFields:ViewingSolutionCurvesEachtimewespecifyaninitialconditiony(x0)=y0forthesolutionofadifferentialequation,thesolutioncurve(graphofthesolution)isrequiredtopassthroughthepoint(x0,y0)andtohaveslope
f(x0,y0)there.12GeometricInterpretationoftheFirstOrderDifferentialEquationSlopeFields:ViewingSolutionCurvesWecanpicturetheslopesgraphicallybydrawingshortlinesegmentsofslopef(x,y)atselectedpoints(x,y)intheregionofthexy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国电子式单相电能表行业投资前景及策略咨询研究报告
- 2025至2031年中国中门装置行业投资前景及策略咨询研究报告
- 2025至2030年中国颗粒充填包装机数据监测研究报告
- 2025至2030年中国遮光防水垂帘片数据监测研究报告
- 2025至2030年中国船用锚链数据监测研究报告
- 2025至2030年中国耐磨阀数据监测研究报告
- 2025至2030年中国生物香片数据监测研究报告
- 2025至2030年中国液压万能实验机数据监测研究报告
- 市政自来水迁改施工方案
- 2025至2030年中国无斗式定量包装秤数据监测研究报告
- 先天性肾上腺皮质增生症
- 2024年保密法培训课件
- 怀念战友混声四部合唱简谱
- 城市轨道交通通信信号系统-综合练习题含答案
- 2024年湖南铁道职业技术学院单招职业技能测试题库及答案解析word版
- 新《安全生产法》全面解读“三管三必须”
- 印刷包装行业复工安全培训课件
- 蜜蜂的社会结构和功能
- 电气八大管理制度
- 财政投资评审项目造价咨询服务方案审计技术方案
- 中国电信应急管理整体解决方案
评论
0/150
提交评论