2023届陕西省宝鸡市高新区八年级数学第二学期期末达标检测试题含解析_第1页
2023届陕西省宝鸡市高新区八年级数学第二学期期末达标检测试题含解析_第2页
2023届陕西省宝鸡市高新区八年级数学第二学期期末达标检测试题含解析_第3页
2023届陕西省宝鸡市高新区八年级数学第二学期期末达标检测试题含解析_第4页
2023届陕西省宝鸡市高新区八年级数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)2.下表是小红填写的实践活动报告的部分内容:设铁塔顶端到地面的高度为,根据以上条件,可以列出的方程为()A. B.C. D.3.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A., B.C.,, D.,4.某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积。若设每人每小时绿化的面积为平方米,根据题意下面所列方程正确的是()A. B.C. D.5.如图所示的四边形,与选项中的四边形一定相似的是()A. B.C. D.6.如图,在平行四边形ABCD中,对角线AC和BD相交于点O,点E是BC边的中点,OE=1,则AB的长为()A.2 B.1C. D.47.已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是()A. B.5 C. D.128.下列条件中,不能判定一个四边形是平行四边形的是()A.两组对边分别平行 B.两组对边分别相等C.两组对角分别相等 D.一组对边平行且另一组对边相等9.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A. B. C.12 D.2410.等腰三角形的两边长分别为2、4,则它的周长为()A.8 B.10 C.8或10 D.以上都不对11.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm12.二次根式在实数范围内有意义,则x应满足的条件是(

)A.x≥1 B.x>1 C.x>﹣1 D.x≥﹣1二、填空题(每题4分,共24分)13.外角和与内角和相等的平面多边形是_______________.14.点P(﹣3,4)到x轴和y轴的距离分别是_____.15.等腰三角形的一个外角为100︒,则这个等腰三角形的顶角为_________.16.如图,将绕着直角顶点顺时针旋转,得到,连接,若,则__________度.17.在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)18.定理“对角线互相平分的四边形是平行四边形”的逆命题是________三、解答题(共78分)19.(8分)在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数和的图象,分别与x轴交于点A、B,两直线交于点C.已知点,,观察图象并回答下列问题:(1)关于x的方程的解是______;关于x的不等式的解集是______;(2)直接写出关于x的不等式组的解集;(3)若点,求关于x的不等式的解集和△ABC的面积.20.(8分)为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)行驶路程收费标准调价前调价后不超过3km的部分起步价6元起步价a元超过3km不超出6km的部分每公里2.1元每公里b元超出6km的部分每公里c元设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:(1)填空:a=,b=,c=.(2)写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.(3)函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.21.(8分)先化简,再求值:,其中x是的整数部分.22.(10分)已知等腰三角形的周长为,底边长是腰长的函数.写出这个函数关系式;求自变量的取值范围;画出这个函数的图象.23.(10分)课堂上老师讲解了比较和的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:,,因为>,所以>,则有<.请你设计一种方法比较与的大小.24.(10分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120∘,∠B=∠ADC=90°.E、F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_________;探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55海里/小时的速度前进,舰艇乙沿北偏东50°的方向以75海里/小时的速度前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.25.(12分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:米),则d1,d2与t的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v2=________米/分;

(2)写出d1与t的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?26.一辆汽车和一辆摩托车分别从,两地去同一城市,它们离地的路程随时间变化的图象如图所示,根据图象中的信息解答以下问题:(1),两地相距______;(2)分别求出摩托车和汽车的行驶速度;(3)若两图象的交点为,求点的坐标,并指出点的实际意义.

参考答案一、选择题(每题4分,共48分)1、C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.2、A【解析】

过D作DH⊥EF于H,则四边形DCEH是矩形,根据矩形的性质得到HE=CD=10,CE=DH,求得FH=x-10,得到CE=x-10,根据三角函数的定义列方程即可得到结论.【详解】解:过D作DH⊥EF于H,

则四边形DCEH是矩形,

∴HE=CD=10,CE=DH,

∴FH=x-10,

∵∠FDH=α=45°,

∴DH=FH=x-10,

∴CE=x-10,∴x=(x-10)tan50°,

故选:A.【点睛】本题考查了解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,正确的识别图形,由实际问题抽象出一元一次方程.3、A【解析】

根据正方形的判定定理即可求解.【详解】A∵,∴四边形ABCD为矩形,由,所以矩形ABCD为正方形,B.,四边形ABCD为菱形;C.,,,四边形ABCD为菱形;D.,,不能判定四边形ABCD为正方形,故选A.【点睛】此题主要考查正方形的判定,解题的关键是熟知正方形的判定定理.4、A【解析】

设每人每小时的绿化面积为x平方米,等量关系为:6名工人比8名工人完成任务多用3小时,据此列方程即可.【详解】解:设每人每小时的绿化面积为x平方米,

由题意得,故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5、D【解析】

根据勾股定理求出四边形ABCD的四条边之比,根据相似多边形的判定方法判断即可.【详解】作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选:D.【点睛】此题考查相似多边形的判定定理,两个多边形的对应角相等,对应边成比例,则这两个多边形相似,此题求出多边形的剩余边长是解题的关键,利用矩形的性质定理,勾股定理求出边长.6、A【解析】

首先证明OE是△BCD的中位线,再根据平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,∵BE=EC,∴OE=CD,∵OE=1,∴AB=CD=2,故答案为:A【点睛】此题考查平行四边形的性质,三角形中位线定理,解题关键在于求出OE是△BCD的中位线7、A【解析】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=169=AC2,∴△ABC是直角三角形,当BP⊥AC时,BP最小,∴线段BP长的最小值是:13BP=5×12,解得:BP=.故选A.点睛:本题主要考查勾股定理的逆定理以及直角三角形面积求法,关键是熟练运用勾股定理的逆定理进行分析.8、D【解析】

根据平行四边形的判定方法一一判断即可【详解】解:A、两组对边分别平行,可判定该四边形是平行四边形,故A不符合题意;B、两组对角分别相等,可判定该四边形是平行四边形,故B不符合题意;C、对角线互相平分,可判定该四边形是平行四边形,故C不符合题意;B、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故D符合题意.故选D.【点睛】此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.9、A【解析】

解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,即5DH=×8×6,解得DH=.故选A.【点睛】本题考查菱形的性质.10、B【解析】

由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;

②当4为腰时,符合题意,则周长是2+4+4=1.

故选:B.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.11、C【解析】

首先画出圆柱的侧面展开图,进而得到SC=12cm,FC=18-2=16cm,再利用勾股定理计算出SF长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF的长,由勾股定理,SF2=SC2+FC2=122+(18-1-1)2=400,SF=20cm,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.12、A【解析】

二次根式在实数范围内有意义的条件是被开方数大于等于0,据此列不等式求出x的范围即可.【详解】由题意得:x-1≥0,则x≥1

,故答案为:A.【点睛】本题考查二次根式有意义的条件,属于简单题,基础知识扎实是解题关键.二、填空题(每题4分,共24分)13、四边形【解析】

设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.【详解】设此多边形是n边形,由题意得:解得故答案为:四边形.【点睛】本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.14、4;1.【解析】

首先画出坐标系,确定P点位置,根据坐标系可得答案.【详解】点P(﹣1,4)到x轴的距离为4,到y轴的距离是1.故答案为:4;1.【点睛】本题考查了点的坐标,关键是正确确定P点位置.15、12.【解析】

因为题中没有指明该外角是顶角的外角还是底角的外角,所以应该分两种情况进行讨论.【详解】解:当100°的角是顶角的外角时,顶角的度数为180°-100°=80°;

当100°的角是底角的外角时,底角的度数为180°-100°=80°,所以顶角的度数为180°-2×80°=20°;∴顶角的度数为80°或20°.故答案为80°或20°.【点睛】本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质等知识;分情况进行讨论是解答问题的关键.16、70【解析】

首先由旋转的性质,得△ABC≌△A′B′C,然后利用等腰直角三角形的性质等角转换,即可得解.【详解】由旋转的性质,得△ABC≌△A′B′C,∴AC=A′C,∠BAC=∠B′A′C,∠ACA′=90°,∴∠CAA′=∠CA′A=45°∵∴∠BAC=25°∴∠BAA′=∠BAC+∠CAA′=25°+45°=70°故答案为:70.【点睛】此题主要考查利用全等三角形旋转求解角度,熟练掌握,即可解题.17、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.18、平行四边形的对角线互相平分【解析】

题设:四边形的对角线互相平分,结论:四边形是平行四边形.把题设和结论互换即得其逆命题.【详解】逆命题是:平行四边形的对角线互相平分.故答案为:平行四边形的对角线互相平分.【点睛】命题的逆命题是把原命题的题设和结论互换.原命题正确但逆命题不一定正确,所以并不是所有的定理都有逆定理.三、解答题(共78分)19、(1)x=-1,;(2)-1<x<2;(3),.【解析】

(1)利用直线与x轴交点即为y=0时,对应x的值,进而得出答案;(2)利用两直线与x轴交点坐标,结合图象得出答案;(3)两条直线相交于点C,根据点C的左右两边图像的位置可确定答案;利用三角形面积公式求得即可.【详解】解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(-1,0)、B(2,0),∴关于x的方程k1x+b1=0的解是x=-1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=-1,x>2;(2)根据图象可以得到关于x的不等式组的解集-1<x<2;(3)∵C(1, 3),根据图象可以得到关于x的不等式k1x+b1>kx+b的解集:∵AB=3,∴S△ABC=AB•yC=×3×3=.【点睛】此题主要考查了一元一次方程的解、一次函数与不等式,一次函数与不等式组,三角形面积,正确利用数形结合解题是解题关键.20、(1)7,1.4,2.1;(2)y1=2.1x﹣0.3;图象见解析;(3)函数y1与y2的图象存在交点(,9);其意义为当x<时是方案调价前合算,当x>时方案调价后合算.【解析】

(1)a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;(2)当x>3时,y1与x的关系,由两部分组成,第一部分为起步价6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;(3)当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价.【详解】①由图可知,a=7元,b=(11.2﹣7)÷(6﹣3)=1.4元,c=(13.3﹣11.2)÷(7﹣6)=2.1元,故答案为7,1.4,2.1;②由图得,当x>3时,y1与x的关系式是:y1=6+(x﹣3)×2.1,整理得,y1=2.1x﹣0.3,函数图象如图所示:③由图得,当3<x<6时,y2与x的关系式是:y2=7+(x﹣3)×1.4,整理得,y2=1.4x+2.8;所以,当y1=y2时,交点存在,即,2.1x﹣0.3=1.4x+2.8,解得,x=,y=9;所以,函数y1与y2的图象存在交点(,9);其意义为当x<时是方案调价前合算,当x>时方案调价后合算.【点睛】本题主要考查了一次函数在实际问题中的应用,根据题意中的等量关系建立函数关系式,根据函数解析式求得对应的x的值,根据解析式作出函数图象,运用数形结合思想等,熟练运用相关知识是解题的关键.21、,【解析】

原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.【详解】解:原式=∵x是的整数部分,∴x=2.当x=2时,.【点睛】本题考查分式的化简求值,熟练掌握运算法则是解题关键.22、(1);(2);(3)见详解.【解析】

(1)根据等腰三角形的周长计算公式表示即可;(2)根据构成三角形三边的关系即可确定自变量的取值范围;(3)可取两个点,在平面直角坐标系中描点、连线即可.【详解】解:(1)这个函数关系式为;(2)由题意得,即,解得,所以自变量的取值范围为;(3)当时,;当时,,函数关系式()的图象如图所示,【点睛】本题考查了一次函数关系式、函数自变量的取值范围及函数的图象,结合等腰三角形的性质及三角形三边的关系是解题的关键.23、方法见解析.【解析】【分析】观察可知8+3=6+5,因此可以利用两数平方进行比较进而得出答案.【详解】

,,∵,∴,∵,,∴.【点睛】本题考查了实数大小比较,二次根式的运算,理解题意,并且根据式子的特点确定出合适的方法是解题的关键.24、问题背景:EF=BE+DF,理由见解析;探索延伸:结论仍然成立,理由见解析;实际应用:210海里.【解析】

问题背景:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;探索延伸:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;实际应用:连接EF,延长AE、BF相交于点C,然后与(2)同理可证.【详解】问题背景:EF=BE+DF,证明如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF,故答案为EF=BE+DF;探索延伸:结论EF=BE+DF仍然成立,理由:延长FD到点G.使DG=BE,连结AG,如图2,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=2×(45+75)=260(海里),答:此时两舰艇之间的距离是260海里.【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.25

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论